Abstract
Purified α-toxin from Naja nigricollis snake venom labeled by [3H]acetylation binds specifically to the acetylcholine receptors of mouse neuroblastoma cells. Toxin binding was inhibited by inhibitors for nicotinic and muscarinic acetylcholine receptors. Clones of neuroblastoma cells were selected for low acetylcholinesterase (EC 3.1.1.7) activity with antibodies against this enzyme. Selection for an 80-fold decrease in acetylcholinesterase activity was not associated with any decrease in the number of acetylcholine receptors (3.4 × 107 per cell). Removal or inactivation of 80% of the acetylcholine receptors by proteolytic enzymes or by compounds that block sulfhydryl groups did not change the activity of acetylcholinesterase on the cell surface. In addition to these results on the separation between acetylcholine receptors and acetylcholinesterase, a common regulation was found in that both the number of acetylcholine receptors and the activity of acetylcholinesterase were increased 5- to 10-fold when the cells stopped to multiply or were induced to differentiate by dibutyryl-cyclic AMP. It is suggested that there are different genes for the acetylcholine receptor and acetylcholinesterase, and that both are regulated during growth and differentiation by a common regulatory gene.
Keywords: Naja nigricollis snake venom, proteolytic enzymes, sulfhydryl group-blocking compounds
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blume A., Gilbert F., Wilson S., Farber J., Rosenberg R., Nirenberg M. Regulation of acetylcholinesterase in neuroblastoma cells. Proc Natl Acad Sci U S A. 1970 Oct;67(2):786–792. doi: 10.1073/pnas.67.2.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bosmann H. B. Acetylcholine receptor. I. Identification and biochemical characteristics of a cholinergic receptor of guinea pig cerebral cortex. J Biol Chem. 1972 Jan 10;247(1):130–145. [PubMed] [Google Scholar]
- Changeux J. P., Podleski T. R., Wofsy L. Affinity labeling of the acetylcholine-receptor. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2063–2070. doi: 10.1073/pnas.58.5.2063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dudai Y., Silman I., Shinitzky M., Blumberg S. Purification by affinity chromatography of the molecular forms of acetylcholinesterase present in fresh electric-organ tissue of electric eel. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2400–2403. doi: 10.1073/pnas.69.9.2400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inbar M., Sachs L. Structural difference in sites on the surface membrane of normal and transformed cells. Nature. 1969 Aug 16;223(5207):710–712. doi: 10.1038/223710a0. [DOI] [PubMed] [Google Scholar]
- Karlin A., Bartels E. Effects of blocking sulfhydryl groups and of reducing disulfide bonds on the acetylcholine-activated permeability system of the electroplax. Biochim Biophys Acta. 1966 Nov 8;126(3):525–535. doi: 10.1016/0926-6585(66)90010-0. [DOI] [PubMed] [Google Scholar]
- Karlin A. Chemical distinctions between acetylcholinesterase and the acetylcholine receptor. Biochim Biophys Acta. 1967 Jul 11;139(2):358–362. doi: 10.1016/0005-2744(67)90039-3. [DOI] [PubMed] [Google Scholar]
- Karlsson E., Eaker D. L., Porath J. Purification of a neurotoxin from the venom of Naja nigricollis. Biochim Biophys Acta. 1966 Oct 31;127(2):505–520. doi: 10.1016/0304-4165(66)90404-1. [DOI] [PubMed] [Google Scholar]
- Karlsson E., Heilbronn E., Widlund L. Isolation of the nicotinic acetylcholine receptor by biospecific chromatography on insolubilized Naja naja neurotoxin. FEBS Lett. 1972 Nov 15;28(1):107–111. doi: 10.1016/0014-5793(72)80688-4. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Leuzinger W., Baker A. L. Acetylcholinesterase, I. Large-scale purification, homogeneity, and amino Acid analysis. Proc Natl Acad Sci U S A. 1967 Feb;57(2):446–451. doi: 10.1073/pnas.57.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meunier J. C., Olsen R. W., Menez A., Fromageot P., Boquet P., Changeux J. P. Some physical properties of the cholinergic receptor protein from Electrophorus electricus revealed by a tritiated alpha-toxin from Naja nigricollis venom. Biochemistry. 1972 Mar 28;11(7):1200–1210. doi: 10.1021/bi00757a014. [DOI] [PubMed] [Google Scholar]
- Miledi R., Molinoff P., Potter L. T. Isolation of the cholinergic receptor protein of Torpedo electric tissue. Nature. 1971 Feb 19;229(5286):554–557. doi: 10.1038/229554a0. [DOI] [PubMed] [Google Scholar]
- Miller I. R., Great H. Protein labeling by acetylation. Biopolymers. 1972;11(12):2533–2536. doi: 10.1002/bip.1972.360111212. [DOI] [PubMed] [Google Scholar]
- NACHMANSOHN D. Metabolism and function of the nerve cell. Harvey Lect. 1953;49:57–99. [PubMed] [Google Scholar]
- Olsen R. W., Meunier J. C., Changeux J. P. Progress in the purification of the cholinergic receptor protein from Electrophorus electricus by affinity chromatography. FEBS Lett. 1972 Nov 15;28(1):96–100. doi: 10.1016/0014-5793(72)80686-0. [DOI] [PubMed] [Google Scholar]
- Patrick J., Heinemann S. F., Lindstrom J., Schubert D., Steinbach J. H. Appearance of acetylcholine receptors during differentiation of a myogenic cell line. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2762–2766. doi: 10.1073/pnas.69.10.2762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Podleski T. R. Distinction between the active sites of acetylcholine-receptor and acetylcholinesterase. Proc Natl Acad Sci U S A. 1967 Jul;58(1):268–273. doi: 10.1073/pnas.58.1.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Podleski T. R., Nachmansohn D. Similarities between active sites of acetylcholine receptor and acetylcholinesterase tested with quinolinium ions. Proc Natl Acad Sci U S A. 1966 Sep;56(3):1034–1039. doi: 10.1073/pnas.56.3.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prasad K. N., Vernadakis A. Morphological and biochemical study in x-ray- and dibutyryl cyclic AMP-induced differentiated neuroblastoma cells. Exp Cell Res. 1972 Jan;70(1):27–32. doi: 10.1016/0014-4827(72)90177-2. [DOI] [PubMed] [Google Scholar]
- Siman-Tov R., Sachs L. Enzyme regulation in neuroblastoma cells. Selection of clones with low acetylcholinesterase activity and the independent control of acetylcholinesterase and choline-O-acetyltransferase. Eur J Biochem. 1972 Oct 17;30(1):123–129. doi: 10.1111/j.1432-1033.1972.tb02078.x. [DOI] [PubMed] [Google Scholar]
- Vogel Z., Sytkowski A. J., Nirenberg M. W. Acetylcholine receptors of muscle grown in vitro. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3180–3184. doi: 10.1073/pnas.69.11.3180. [DOI] [PMC free article] [PubMed] [Google Scholar]
