Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Oct;70(10):2931–2935. doi: 10.1073/pnas.70.10.2931

Interaction of Nerve Growth Factor with Surface Membranes: Biological Competence of Insolubilized Nerve Growth Factor

William A Frazier 1, Linda Forrest Boyd 1, Ralph A Bradshaw 1
PMCID: PMC427141  PMID: 4517946

Abstract

Nerve growth factor was insolubilized by covalent attachment to Sepharose beads. Nerve growth factor-Sepharose was biologically active in both the neurite outgrowth assay for nerve growth factor and in preserving responsive neurons in vitro. Modification of the bioassay to detect solubilized activity of nerve growth factor and histological examination of ganglia treated with nerve growth factor-Sepharose revealed that nerve growth factor-Sepharose prepared by reaction in 6 M guanidine hydrochloride released negligible amounts of solubilized nerve growth factor activity. These observations extend the previously noted correlations on the structure and function of nerve growth factor and insulin to include the primary action of these two proteins. Thus nerve growth factor, like insulin, appears to express its biological activity by first binding to a receptor on the surface membrane of responsive cells.

Keywords: nerve growth factor-Sepharose, sensory ganglia, neurite outgrowth, neuron preservation, nerve growth factor receptor

Full text

PDF
2931

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angeletti R. H., Bradshaw R. A., Wade R. D. Subunit structure and amino acid composition of mouse submaxillary gland nerve growth factor. Biochemistry. 1971 Feb 2;10(3):463–469. doi: 10.1021/bi00779a018. [DOI] [PubMed] [Google Scholar]
  2. Bocchini V., Angeletti P. U. The nerve growth factor: purification as a 30,000-molecular-weight protein. Proc Natl Acad Sci U S A. 1969 Oct;64(2):787–794. doi: 10.1073/pnas.64.2.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cuatrecasas P. Interaction of insulin with the cell membrane: the primary action of insulin. Proc Natl Acad Sci U S A. 1969 Jun;63(2):450–457. doi: 10.1073/pnas.63.2.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cuatrecasas P. Protein purification by affinity chromatography. Derivatizations of agarose and polyacrylamide beads. J Biol Chem. 1970 Jun;245(12):3059–3065. [PubMed] [Google Scholar]
  5. Frazier W. A., Angeletti R. H., Bradshaw R. A. Nerve growth factor and insulin. Science. 1972 May 5;176(4034):482–488. doi: 10.1126/science.176.4034.482. [DOI] [PubMed] [Google Scholar]
  6. Frazier W. A., Hogue-Angeletti R. A., Sherman R., Bradshaw R. A. Topography of mouse 2.5S nerve growth factor. Reactivity of tyrosine and tryptophan. Biochemistry. 1973 Aug 14;12(17):3281–3293. doi: 10.1021/bi00741a021. [DOI] [PubMed] [Google Scholar]
  7. Frazier W. A., Ohlendorf C. E., Boyd L. F., Aloe L., Johnson E. M., Ferrendelli J. A., Bradshaw R. A. Mechanism of action of nerve growth factor and cyclic AMP on neurite outgrowth in embryonic chick sensory ganglia: demonstration of independent pathways of stimulation. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2448–2452. doi: 10.1073/pnas.70.8.2448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LEVI-MONTALCINI R., ANGELETTI P. U. Essential role of the nerve growth factor in the survival and maintenance of dissociated sensory and sympathetic embryonic nerve cells in vitro. Dev Biol. 1963 Mar;6:653–659. doi: 10.1016/0012-1606(63)90149-0. [DOI] [PubMed] [Google Scholar]
  9. LEVI-MONTALCINI R., MEYER H., HAMBURGER V. In vitro experiments on the effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res. 1954 Jan;14(1):49–57. [PubMed] [Google Scholar]
  10. Levi-Montalcini R., Angeletti P. U. Nerve growth factor. Physiol Rev. 1968 Jul;48(3):534–569. doi: 10.1152/physrev.1968.48.3.534. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES