Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Oct;70(10):2951–2955. doi: 10.1073/pnas.70.10.2951

Dynamics of Metabolism of Normal and Virus-Transformed Chick Cells in Culture

M J Bissell 1, R C White 1, C Hatie 1, J A Bassham 1
PMCID: PMC427145  PMID: 4355375

Abstract

Application of steady-state tracer technique to normal and transformed cells in tissue culture allows quantitation of intracellular pool sizes of many metabolites and determination of rate of carbon flow along diverse paths. Using a unique apparatus to control the environmental conditions, we show that the glucose carbon flow into tricarboxylic acid cycle intermediates and amino acids is unchanged upon transformation. The increased glycogen formation and glycolysis varies with the glucose concentration in the medium, correlates with the faster glucose transport of transformed cells, and cannot be explained by a difference in growth rate alone.

Keywords: steady-state metabolism, [14C]glucose, two-dimensional chromatography, autoradiography

Full text

PDF
2951

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALPERS J. B., WU R., RACKER E. Regulatory mechanisms in carbohydrate metabolism. VI. Glycogen metabolism in HeLa cells. J Biol Chem. 1963 Jul;238:2274–2280. [PubMed] [Google Scholar]
  2. Bassham J. A. The control of photosynthetic carbon metabolism. Science. 1971 May 7;172(3983):526–534. doi: 10.1126/science.172.3983.526. [DOI] [PubMed] [Google Scholar]
  3. Bissell M. J., Hatié C., Rubin H. Patterns of glucose metabolism in normal and virus-transformed chick cells in tissue culture. J Natl Cancer Inst. 1972 Aug;49(2):555–565. [PubMed] [Google Scholar]
  4. Bissell M. J., Rubin H., Hatié C. Leakage as the source of overgrowth stimulating activity in Rous sarcoma transformed cultures. Exp Cell Res. 1971 Oct;68(2):404–410. doi: 10.1016/0014-4827(71)90166-2. [DOI] [PubMed] [Google Scholar]
  5. Ceccarini C., Eagle H. pH as a determinant of cellular growth and contact inhibition. Proc Natl Acad Sci U S A. 1971 Jan;68(1):229–233. doi: 10.1073/pnas.68.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Colby C., Edlin G. Nucleotide pool levels in growing, inhibited, and transformed chick fibroblast cells. Biochemistry. 1970 Feb 17;9(4):917–920. doi: 10.1021/bi00806a029. [DOI] [PubMed] [Google Scholar]
  7. Goggins J. F., Johnson G. S., Pastan I. The effect of dibutyryl cyclic adenosine monophosphate on synthesis of sulfated acid mucopolysaccharides by transformed fibroblasts. J Biol Chem. 1972 Sep 25;247(18):5759–5764. [PubMed] [Google Scholar]
  8. Hatanaka M., Augl C., Gilden R. V. Evidence for a functional change in the plasma membrane of murine sarcoma virus-infected mouse embryo cells. Transport and transport-associated phosphorylation of 14C-2-deoxy-D-glucose. J Biol Chem. 1970 Feb 25;245(4):714–717. [PubMed] [Google Scholar]
  9. Hatanaka M., Huebner R. J., Gilden R. V. Alterations in the characteristics of sugar uptake by mouse cells transformed by murine sarcoma viruses. J Natl Cancer Inst. 1969 Nov;43(5):1091–1096. [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Martin G. S., Venuta S., Weber M., Rubin H. Temperature-dependent alterations in sugar transport in cells infected by a temperature-sensitive mutant of Rous sarcoma virus. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2739–2741. doi: 10.1073/pnas.68.11.2739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mizel S. B. Differential effect of cytochalasin B on the two possible modes of 2-deoxyglucose transport in HeLa cells. Nat New Biol. 1973 May 23;243(125):125–126. [PubMed] [Google Scholar]
  13. Racker E. Bioenergetics and the problem of tumor growth. Am Sci. 1972 Jan-Feb;60(1):56–63. [PubMed] [Google Scholar]
  14. Rein A., Rubin H. Effects of local cell concentrations upon the growth of chick embryo cells in tissue culture. Exp Cell Res. 1968 Mar;49(3):666–678. doi: 10.1016/0014-4827(68)90213-9. [DOI] [PubMed] [Google Scholar]
  15. Renner E. D., Plagemann P. G., Bernlohr R. W. Permeation of glucose by simple and facilitated diffusion by Novikoff rat hepatoma cells in suspension culture and its relationship to glucose metabolism. J Biol Chem. 1972 Sep 25;247(18):5765–5776. [PubMed] [Google Scholar]
  16. Romano A. H., Colby C. SV40 virus transformation of mouse 3T3 cells does not specifically enhance sugar transport. Science. 1973 Mar 23;179(4079):1238–1240. doi: 10.1126/science.179.4079.1238. [DOI] [PubMed] [Google Scholar]
  17. Rubin H. Overgrowth-stimulating activity of disrupted chick embryo cells and cells infected with Rous sarcoma virus. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1256–1263. doi: 10.1073/pnas.67.3.1256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rubin H. pH and population density in the regulation of animal cell multiplication. J Cell Biol. 1971 Dec;51(3):686–702. doi: 10.1083/jcb.51.3.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Satoh C., Duff R., Rapp F., Davidson E. A. Production of mucopolysaccharides by normal and transformed cells. Proc Natl Acad Sci U S A. 1973 Jan;70(1):54–56. doi: 10.1073/pnas.70.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sefton B. M., Rubin H. Stimulation of glucose transport in cultures of density-inhibited chick embryo cells. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3154–3157. doi: 10.1073/pnas.68.12.3154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Steck T. L., Kaufman S., Bader J. P. Glycolysis in chick embryo cell cultures transformed by Rous sarcoma virus. Cancer Res. 1968 Aug;28(8):1611–1619. [PubMed] [Google Scholar]
  22. Venuta S., Rubin H. Sugar transport in normal and Rous sarcoma virus-transformed chick-embryo fibroblasts. Proc Natl Acad Sci U S A. 1973 Mar;70(3):653–657. doi: 10.1073/pnas.70.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vogt P. K., Ishizaki R. Reciprocal patterns of genetic resistance to avian tumor viruses in two lines of chickens. Virology. 1965 Aug;26(4):664–672. doi: 10.1016/0042-6822(65)90329-6. [DOI] [PubMed] [Google Scholar]
  24. Weber M. J. Hexose transport in normal and in Rous sarcoma virus-transformed cells. J Biol Chem. 1973 May 10;248(9):2978–2983. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES