Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Nov;70(11):3094–3098. doi: 10.1073/pnas.70.11.3094

A Mammalian Cell Mutant with a Temperature-Sensitive Leucyl-Transfer RNA Synthetase

L H Thompson 1,*, J L Harkins 1, C P Stanners 1
PMCID: PMC427177  PMID: 4361675

Abstract

A cell mutant of the Chinese hamster ovary line, which is temperature sensitive for protein synthesis, is specifically defective in vivo in its ability to charge tRNA with leucine. Cytoplasmic extracts exhibited temperature-sensitive leucyl-tRNA synthetase activity. It is, therefore, highly likely that the mutant has a structural alteration in leucyl-tRNA synthetase. The low leakiness and low reversion rate of this mutant, combined with the specificity of the defect in its protein-synthesizing machinery, make it an appealing tool for investigating regulatory mechanisms in animal cells.

Keywords: somatic cell genetics, CHO cells, conditional lethality, inhibition of protein synthesis

Full text

PDF
3094

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht A. M., Biedler J. L., Hutchison D. J. Two different species of dihydrofolate reductase in mammalian cells differentially resistant to amethopterin and methasquin. Cancer Res. 1972 Jul;32(7):1539–1546. [PubMed] [Google Scholar]
  2. Beaudet A. L., Roufa D. J., Caskey C. T. Mutations affecting the structure of hypoxanthine: guanine phosphoribosyltransferase in cultured Chinese hamster cells. Proc Natl Acad Sci U S A. 1973 Feb;70(2):320–324. doi: 10.1073/pnas.70.2.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buckel P., Ruffler D., Piepersberg W., Böck A. RNA overproducing revertants of an alanyl-tRNA synthetase mutant of Escherichia coli. Mol Gen Genet. 1972;119(4):323–335. doi: 10.1007/BF00272090. [DOI] [PubMed] [Google Scholar]
  4. Chan V. L., Whitmore G. F., Siminovitch L. Mammalian cells with altered forms of RNA polymerase II. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3119–3123. doi: 10.1073/pnas.69.11.3119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deaven L. L., Petersen D. F. The chromosomes of CHO, an aneuploid Chinese hamster cell line: G-band, C-band, and autoradiographic analyses. Chromosoma. 1973;41(2):129–144. doi: 10.1007/BF00319690. [DOI] [PubMed] [Google Scholar]
  7. Fiil N. P., von Meyenburg K., Friesen J. D. Accumulation and turnover of guanosine tetraphosphate in Escherichia coli. J Mol Biol. 1972 Nov 28;71(3):769–783. doi: 10.1016/s0022-2836(72)80037-8. [DOI] [PubMed] [Google Scholar]
  8. Gallo R. C., Pestka S. Transfer RNA species in normal and leukemic human lymphoblasts. J Mol Biol. 1970 Sep 14;52(2):195–219. doi: 10.1016/0022-2836(70)90025-2. [DOI] [PubMed] [Google Scholar]
  9. Goldberg A. L. A role of aminoacyl-tRNA in the regulation of protein breakdown in Escherichia coli. Proc Natl Acad Sci U S A. 1971 Feb;68(2):362–366. doi: 10.1073/pnas.68.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harris M. Mutation rates in cells at different ploidy levels. J Cell Physiol. 1971 Oct;78(2):177–184. doi: 10.1002/jcp.1040780204. [DOI] [PubMed] [Google Scholar]
  11. Klebe R. J., Chen T., Ruddle F. H. Controlled production of proliferating somatic cell hybrids. J Cell Biol. 1970 Apr;45(1):74–82. doi: 10.1083/jcb.45.1.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Low B., Gates F., Goldstein T., Söll D. Isolation and partial characterization of temperature-sensitive Escherichia coli mutants with altered leucyl- and seryl-transfer ribonucleic acid synthetases. J Bacteriol. 1971 Nov;108(2):742–750. doi: 10.1128/jb.108.2.742-750.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Meiss H. K., Basilico C. Temperature sensitive mutants of BHK 21 cells. Nat New Biol. 1972 Sep 20;239(90):66–68. doi: 10.1038/newbio239066a0. [DOI] [PubMed] [Google Scholar]
  15. Mezger-Freed L. Effect of ploidy and mutagens on bromodeoxyuridine resistance in haploid and diploid frog cells. Nat New Biol. 1972 Feb 23;235(60):245–246. doi: 10.1038/newbio235245a0. [DOI] [PubMed] [Google Scholar]
  16. Mikulka T. W., Stieglitz B. I., Calvo J. M. Leucyl-transfer ribonucleic acid synthetase from a wild-type and temperature-sensitive mutant of Salmonella typhimurium. J Bacteriol. 1972 Feb;109(2):584–593. doi: 10.1128/jb.109.2.584-593.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Naha P. M. Temperature sensitive conditional mutants of monkey kidney cells. Nature. 1969 Sep 27;223(5213):1380–1381. doi: 10.1038/2231380a0. [DOI] [PubMed] [Google Scholar]
  18. PUCK T. T., CIECIURA S. J., ROBINSON A. Genetics of somatic mammalian cells. III. Long-term cultivation of euploid cells from human and animal subjects. J Exp Med. 1958 Dec 1;108(6):945–956. doi: 10.1084/jem.108.6.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ruddle F. H. Linkage analysis in man by somatic cell genetics. Nature. 1973 Mar 16;242(5394):165–169. doi: 10.1038/242165a0. [DOI] [PubMed] [Google Scholar]
  20. Scheffler I. E., Buttin G. Conditionally lethal mutations in Chinese hamster cells. I. Isolation of a temperature-sensitive line and its investigation by cell cycle studies. J Cell Physiol. 1973 Apr;81(2):199–216. doi: 10.1002/jcp.1040810208. [DOI] [PubMed] [Google Scholar]
  21. Smith B. J., Wigglesworth N. M. Cell line which is temperature-sensitive for cytokinesis. J Cell Physiol. 1972 Oct;80(2):253–259. doi: 10.1002/jcp.1040800212. [DOI] [PubMed] [Google Scholar]
  22. Smith D. B., Chu E. H. Isolation and characterization of temperature-sensitive mutants in a Chinese hamster cell line. Mutat Res. 1973 Jan;17(1):113–120. doi: 10.1016/0027-5107(73)90259-5. [DOI] [PubMed] [Google Scholar]
  23. Stanners C. P., Becker H. Control of macromolecular synthesis in proliferating and resting Syrian hamster cells in monolayer culture. I. Ribosome function. J Cell Physiol. 1971 Feb;77(1):31–42. doi: 10.1002/jcp.1040770105. [DOI] [PubMed] [Google Scholar]
  24. Stanners C. P., Eliceiri G. L., Green H. Two types of ribosome in mouse-hamster hybrid cells. Nat New Biol. 1971 Mar 10;230(10):52–54. doi: 10.1038/newbio230052a0. [DOI] [PubMed] [Google Scholar]
  25. Stanners C. P. Polyribosomes of hamster cells: transit time measurements. Biophys J. 1968 Feb;8(2):231–251. doi: 10.1016/S0006-3495(68)86487-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Thompson L. H., Mankovitz R., Baker R. M., Till J. E., Siminovitch L., Whitmore G. F. Isolation of temperature-sensitive mutants of L-cells. Proc Natl Acad Sci U S A. 1970 Jun;66(2):377–384. doi: 10.1073/pnas.66.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Thompson L. H., Mankovitz R., Baker R. M., Wright J. A., Till J. E., Siminovitch L., Whitmore G. F. Selective and nonselective isolation of temperature-sensitive mutants of mouse L-cells and their characterization. J Cell Physiol. 1971 Dec;78(3):431–440. doi: 10.1002/jcp.1040780312. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES