Abstract
Adenosine causes an increase in the concentration of cyclic AMP in mouse neuroblastoma cells. The amount of increase observed in intracellular cyclic AMP levels due to exogenous adenosine depends greatly on the concentration of a specific cyclic AMP phosphodiesterase inhibitor, 4-(-3-butoxy-4-methoxybenzyl)-2-imidazolidinone. Unstimulated concentrations of cyclic AMP were 29-40 pmol/mg of protein, and concentrations after addition of 0.2 mM adenosine were usually twice as high. The presence of 0.7 mM inhibitor along with 0.2 mM adenosine caused an increase in cyclic AMP levels up to 1000-2000 pmol/mg of protein. In the presence of 0.7 mM inhibitor, 2 μM adenosine gives a half-maximal cyclic AMP elevation. Theophylline blocked the elevation of cyclic AMP concentrations caused by exogenous adenosine. The data show that the cyclic AMP system of mouse neuroblastoma has the necessary receptor components to respond positively to exogenous adenosine. The results presented support a direct effect of adenosine, mediated through its control of intracellular levels, on neuronal elements of the nervous system.
Keywords: nerve cells, phosphodiesterase inhibitors
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amano T., Richelson E., Nirenberg M. Neurotransmitter synthesis by neuroblastoma clones (neuroblast differentiation-cell culture-choline acetyltransferase-acetylcholinesterase-tyrosine hydroxylase-axons-dendrites). Proc Natl Acad Sci U S A. 1972 Jan;69(1):258–263. doi: 10.1073/pnas.69.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnstock G. Purinergic nerves. Pharmacol Rev. 1972 Sep;24(3):509–581. [PubMed] [Google Scholar]
- Clark R. B., Perkins J. P. Regulation of adenosine 3':5'-cyclic monophosphate concentration in cultured human astrocytoma cells by catecholamines and histamine. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2757–2760. doi: 10.1073/pnas.68.11.2757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilman A. G., Nirenberg M. Effect of catecholamines on the adenosine 3':5'-cyclic monophosphate concentrations of clonal satellite cells of neurons. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2165–2168. doi: 10.1073/pnas.68.9.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilman A. G., Nirenberg M. Regulation of adenosine 3',5'-cyclic monophosphate metabolism in cultured neuroblastoma cells. Nature. 1971 Dec 10;234(5328):356–358. doi: 10.1038/234356a0. [DOI] [PubMed] [Google Scholar]
- Huang M., Shimizu H., Daly J. W. Accumulation of cyclic adenosine monophosphate in incubated slices of brain tissue. 2. Effects of depolarizing agents, membrane stabilizers, phosphodiesterase inhibitors, and adenosine analogs. J Med Chem. 1972 May;15(5):462–466. doi: 10.1021/jm00275a005. [DOI] [PubMed] [Google Scholar]
- Kakiuchi S., Rall T. W., McIlwain H. The effect of electrical stimulation upon the accumulation of adenosine 3',5'-phosphate in isolated cerebral tissue. J Neurochem. 1969 Apr;16(4):485–491. doi: 10.1111/j.1471-4159.1969.tb06847.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- McAfee D. A., Greengard P. Adenosine 3',5'-monophosphate: electrophysiological evidence for a role in synaptic transmission. Science. 1972 Oct;178(58):310–312. doi: 10.1126/science.178.4058.310. [DOI] [PubMed] [Google Scholar]
- Nathanson J. A., Greengard P. Octopamine-sensitive adenylate cyclse: evidence for a biological role of octopamine in nervous tissue. Science. 1973 Apr 20;180(4083):308–310. doi: 10.1126/science.180.4083.308. [DOI] [PubMed] [Google Scholar]
- Otten J., Johnson G. S., Pastan I. Cyclic AMP levels in fibroblasts: relationship to growth rate and contact inhibition of growth. Biochem Biophys Res Commun. 1971 Sep;44(5):1192–1198. doi: 10.1016/s0006-291x(71)80212-7. [DOI] [PubMed] [Google Scholar]
- Prasad K. N., Sheppard J. R. Inhibitors of cyclic-nucleotide phosphodiesterase induce morphological differentiation of mouse neuroblastoma cell culture. Exp Cell Res. 1972 Aug;73(2):436–440. doi: 10.1016/0014-4827(72)90069-9. [DOI] [PubMed] [Google Scholar]
- Prasad K. N., Sheppard J. R. Neuroblastoma cell culture: membrane changes during cyclic AMP-induced morphological differentiation. Proc Soc Exp Biol Med. 1972 Oct;141(1):240–243. doi: 10.3181/00379727-141-36750. [DOI] [PubMed] [Google Scholar]
- Pull I., McIlwain H. Metabolism of ( 14 C)adenine and derivatives by cerebral tissues, superfused and electrically stimulated. Biochem J. 1972 Feb;126(4):965–973. doi: 10.1042/bj1260965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sattin A., Rall T. W. The effect of adenosine and adenine nucleotides on the cyclic adenosine 3', 5'-phosphate content of guinea pig cerebral cortex slices. Mol Pharmacol. 1970 Jan;6(1):13–23. [PubMed] [Google Scholar]
- Schultz J., Daly J. W. Cyclic adenosine 3',5'-monophosphate in guinea pig cerebral cortical slices. 3. Formation, degradation, and reformation of cyclic adenosine 3',5'-monophosphate during sequential stimulations by biogenic amines and adenosine. J Biol Chem. 1973 Feb 10;248(3):860–866. [PubMed] [Google Scholar]
- Schultz J., Daly J. W. Cyclic adenosine 3',5'-monophosphate in guinea pig cerebral cortical slices. I. Formation of cyclic adenosine 3',5'-monophosphate from endogenous adenosine triphosphate and from radioactive adenosine triphosphate formed during a prior incubation with radioactive adenine. J Biol Chem. 1973 Feb 10;248(3):843–852. [PubMed] [Google Scholar]
- Schultz J., Daly J. W. Cyclic adenosine 3',5'-monophosphate in guinea pig cerebral cortical slices. II. The role of phosphodiesterase activity in the regulation of levels of cyclic adenosine 3',5'-monophosphate. J Biol Chem. 1973 Feb 10;248(3):853–859. [PubMed] [Google Scholar]
- Schultz J., Hamprecht B., Daly J. W. Accumulation of adenosine 3':5'-cyclic monophosphate in clonal glial cells: labeling of intracellular adenine nucleotides with radioactive adenine. Proc Natl Acad Sci U S A. 1972 May;69(5):1266–1270. doi: 10.1073/pnas.69.5.1266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheppard H., Wiggan G. Analogues of 4-(3,4-dimethoxybenzyl)-2-imidazolidinone as potent inhibitors of rat erythrocyte adenosine cyclic 3',5'-phosphate phosphodiesterase. Mol Pharmacol. 1971 Jan;7(1):111–115. [PubMed] [Google Scholar]
- Sheppard H., Wiggan G. Different sensitivities of the phosphodiesterases (adenosine-3',5'-cyclic phosphate 3'-phosphohydrolase) of dog cerebral cortex and erythrocytes to inhibition by synthetic agents and cold. Biochem Pharmacol. 1971 Aug;20(8):2128–2130. doi: 10.1016/0006-2952(71)90426-6. [DOI] [PubMed] [Google Scholar]
- Sheppard H., Wiggan G., Tsien W. H. Structure-activity relationships for inhibitors of phosphodiesterase from erythrocytes and other tissues. Adv Cyclic Nucleotide Res. 1972;1:103–112. [PubMed] [Google Scholar]
- Shimizu H., Creveling C. R., Daly J. Stimulated formation of adenosine 3',5'-cyclic phosphate in cerebral cortex: synergism between electrical activity and biogenic amines. Proc Natl Acad Sci U S A. 1970 Apr;65(4):1033–1040. doi: 10.1073/pnas.65.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimizu H., Daly J. W. Effect of depolarizing agents on accumulation of cyclic adenosine 3',5'-monophosphate in cerebral cortical slices. Eur J Pharmacol. 1972 Feb;17(2):240–252. doi: 10.1016/0014-2999(72)90165-3. [DOI] [PubMed] [Google Scholar]
- Steiner A. L., Kipnis D. M., Utiger R., Parker C. Radioimmunoassay for the measurement of adenosine 3',5'-cyclic phosphate. Proc Natl Acad Sci U S A. 1969 Sep;64(1):367–373. doi: 10.1073/pnas.64.1.367. [DOI] [PMC free article] [PubMed] [Google Scholar]