Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Nov;70(11):3125–3129. doi: 10.1073/pnas.70.11.3125

Cytogenetic Engineering In Vivo: Restoration of Biologic Complement Activity to C5-Deficient Mice by Intravenous Inoculation of Hybrid Cells

Nelson L Levy *, Ralph Snyderman *,, Roger L Ladda ‡,§, Rose Lieberman
PMCID: PMC427184  PMID: 4131744

Abstract

Splenic macrophages were identified as at least one source of C5 elaboration in normal mice. Hybrid cells were formed from splenic macrophages from C5-deficient mice and either kidney cells from mice with normal amounts of C5 or chicken erythrocytes. These hybrids elaborated C5 in vitro. C5-Deficient mice inoculated with these hybrid cells developed, in their serum, antigenically active mouse C5, as well as both hemolytic and biologic complement activity. These studies demonstrate the feasibility of genetic “repair” in mammals.

Keywords: mouse splenic macrophages, chicken erythrocytes, mouse kidney cells, genetic repair, MuB1 protein

Full text

PDF
3125

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOYDEN S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med. 1962 Mar 1;115:453–466. doi: 10.1084/jem.115.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boyle W. An extension of the 51Cr-release assay for the estimation of mouse cytotoxins. Transplantation. 1968 Sep;6(6):761–764. doi: 10.1097/00007890-196809000-00002. [DOI] [PubMed] [Google Scholar]
  3. CINADER B., DUBISKI S., WARDLAW A. C. DISTRIBUTION, INHERITANCE, AND PROPERTIES OF AN ANTIGEN, MUB1, AND ITS RELATION TO HEMOLYTIC COMPLEMENT. J Exp Med. 1964 Nov 1;120:897–924. doi: 10.1084/jem.120.5.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Colten H. R. In vitro synthesis of a regulator of mammalian gene expression. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2233–2236. doi: 10.1073/pnas.69.8.2233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Colten H. R., Parkman R. Biosynthesis of C4 (fourth component of complement) by hybrids of C4-deficient guinea pig cells and HeLa cells. Science. 1972 Jun 2;176(4038):1029–1031. doi: 10.1126/science.176.4038.1029. [DOI] [PubMed] [Google Scholar]
  6. Guggenheim M. A., Tyrrell S., Rabson A. S. Studies on Sendai virus cell fusion factor. Proc Soc Exp Biol Med. 1968 Dec;129(3):854–857. doi: 10.3181/00379727-129-33441. [DOI] [PubMed] [Google Scholar]
  7. HARRIS H., WATKINS J. F. HYBRID CELLS DERIVED FROM MOUSE AND MAN: ARTIFICIAL HETEROKARYONS OF MAMMALIAN CELLS FROM DIFFERENT SPECIES. Nature. 1965 Feb 13;205:640–646. doi: 10.1038/205640a0. [DOI] [PubMed] [Google Scholar]
  8. Levy N. L., Ladda R. L. Restoration of haemolytic complement activity in C5-deficient mice by gene complementation in hybrid cells. Nat New Biol. 1971 Jan 13;229(2):51–52. doi: 10.1038/newbio229051a0. [DOI] [PubMed] [Google Scholar]
  9. Neff J. M., Enders J. F. Poliovirus replication and cytopathogenicity in monolayer hamster cell cultures fused with beta propiolactone-inactivated Sendai virus. Proc Soc Exp Biol Med. 1968 Jan;127(1):260–267. doi: 10.3181/00379727-127-32668. [DOI] [PubMed] [Google Scholar]
  10. Nilsson U. R., Müller-Eberhard H. J. Deficiency of the fifth component of complement in mice with an inherited complement defect. J Exp Med. 1967 Jan 1;125(1):1–16. doi: 10.1084/jem.125.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Potter M., Lieberman R. Common individual antigenic determinants in five of eight BALB-c IgA myeloma proteins that bind phosphoryl choline. J Exp Med. 1970 Oct 1;132(4):737–751. doi: 10.1084/jem.132.4.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Puck T. T., Wuthier P., Jones C., Kao F. T. Genetics of somatic mammalian cells: lethal antigens as genetic markers for study of human linkage groups. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3102–3106. doi: 10.1073/pnas.68.12.3102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. ROSENBERG L. T., TACHIBANA D. K. Activity of mouse complement. J Immunol. 1962 Dec;89:861–867. [PubMed] [Google Scholar]
  14. Schneeberger E. E., Harris H. An ultrastructural study of inter-specific cell fusion induced by inactivated Sendai virus. J Cell Sci. 1966 Dec;1(4):401–406. doi: 10.1242/jcs.1.4.401. [DOI] [PubMed] [Google Scholar]
  15. Shin H. S., Snyderman R., Friedman E., Mellors A., Mayer M. M. Chemotactic and anaphylatoxic fragment cleaved from the fifth component of guinea pig complement. Science. 1968 Oct 18;162(3851):361–363. doi: 10.1126/science.162.3851.361. [DOI] [PubMed] [Google Scholar]
  16. Snyderman R., Phillips J. K., Mergenhagen S. E. Biological activity of complement in vivo. Role of C5 in the accumulation of polymorphonuclear leukocytes in inflammatory exudates. J Exp Med. 1971 Nov 1;134(5):1131–1143. doi: 10.1084/jem.134.5.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Snyderman R., Shin H. S., Phillips J. K., Gewurz H., Mergenhagen S. E. A neutrophil chemotatic factor derived from C'5 upon interaction of guinea pig serum with endotoxin. J Immunol. 1969 Sep;103(3):413–422. [PubMed] [Google Scholar]
  18. TERRY W. D., BORSOS T., RAPP H. J. DIFFERENCES IN SERUM COMPLEMENT ACTIVITY AMONG INBRED STRAINS OF MICE. J Immunol. 1964 Apr;92:576–578. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES