Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Nov;70(11):3195–3199. doi: 10.1073/pnas.70.11.3195

Plasma Membranes from Cultured Muscle Cells: Isolation Procedure and Separation of Putative Plasma-Membrane Marker Enzymes

Steven D Schimmel 1,2, Claudia Kent 1,2, Richard Bischoff 1,2, P Roy Vagelos 1,2
PMCID: PMC427199  PMID: 4361682

Abstract

Partially purified plasma membranes were obtained from chick-embryo muscle cells grown in tissue culture. The purification procedure involved homogenization in buffered isotonic sucrose followed by differential and sucrose density gradient centrifugations. The activities of five plasma-membrane markers, as well as microsomal and mitochondrial markers, were followed throughout the purification. When cultures were labeled with [125I]α-bungarotoxin, which binds to the surface of cultured muscle cells, the distributions of bound α-bungarotoxin and Na+,K+-ATPase (EC 3.6.1.3) activity were nearly identical. The activities of these two plasma-membrane markers were maximal in the upper two fractions of the sucrose density gradient and were purified 5- to 7-fold with respect to total particulate protein. These fractions contained 20-30% of the Na+,K+-ATPase activity and bound α-bungarotoxin, 4% of the microsomal marker TPNH-dependent cytochrome c reductase, 0.2% of the mitochondrial marker succinate-dependent cytochrome c reductase, 2.7% of the cellular RNA, and 0.02% of the DNA. The activity of the commonly used plasma-membrane marker, 5′-nucleotidase (EC 3.1.3.5), was low in the upper two sucrose gradient fractions and was maximal in a more dense fraction. The distributions of the other two plasma-membrane markers, leucyl β-naphthylamidase and phosphodiesterase I, were intermediate between Na+,K+-ATPase and 5′-nucleotidase. The distributions of all markers were similar in preparations from cultures containing mononucleated myogenic cells, multinucleated myotubes, fibroblasts, or all three cell types. Modification of the procedure to include homogenization in the absence of sucrose resulted in a 3.4-fold purification of the membranes containing 5′-nucleotidase, which were shifted to a lower density.

Keywords: Na+, K+-ATPase; 5′-nucleotidase; α-bungarotoxin

Full text

PDF
3195

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berg D. K., Kelly R. B., Sargent P. B., Williamson P., Hall Z. W. Binding of -bungarotoxin to acetylcholine receptors in mammalian muscle (snake venom-denervated muscle-neonatal muscle-rat diaphragm-SDS-polyacrylamide gel electrophoresis). Proc Natl Acad Sci U S A. 1972 Jan;69(1):147–151. doi: 10.1073/pnas.69.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bischoff R., Holtzer H. Inhibition of myoblast fusion after one round of DNA synthesis in 5-bromodeoxyuridine. J Cell Biol. 1970 Jan;44(1):134–150. doi: 10.1083/jcb.44.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coleman J. R., Coleman A. W. Muscle differentiation and macromolecular synthesis. J Cell Physiol. 1968 Oct;72(2 Suppl):19–34. doi: 10.1002/jcp.1040720404. [DOI] [PubMed] [Google Scholar]
  4. DePierre J. W., Karnovsky M. L. Plasma membranes of mammalian cells: a review of methods for their characterization and isolation. J Cell Biol. 1973 Feb;56(2):275–303. doi: 10.1083/jcb.56.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Evans W. H. Fractionation of liver plasma membranes prepared by zonal centrifugation. Biochem J. 1970 Mar;116(5):833–842. doi: 10.1042/bj1160833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Evans W. H. Subfractionation of rat liver plasma membranes. FEBS Lett. 1969 Jun;3(4):237–241. doi: 10.1016/0014-5793(69)80146-8. [DOI] [PubMed] [Google Scholar]
  7. Hartzell H. C., Fambrough D. M. Acetycholine receptor production and incorporation into membranes of developing muscle fibers. Dev Biol. 1973 Jan;30(1):153–165. doi: 10.1016/0012-1606(73)90054-7. [DOI] [PubMed] [Google Scholar]
  8. Hübscher G., West G. R., Brindley D. N. Studies on the fractionation of mucosal homogenates from the small intestine. Biochem J. 1965 Dec;97(3):629–642. doi: 10.1042/bj0970629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KONIGSBERG I. R. Some aspects of myogenesis in vitro. Circulation. 1961 Aug;24:447–457. doi: 10.1161/01.cir.24.2.447. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Lutz F., Frimmer M. A new method for the isolation of plasma mebranes from pig liver. A combined procedure using 50 Hz-vibration of a sucrose gradient. Hoppe Seylers Z Physiol Chem. 1970 Dec;351(12):1429–1434. doi: 10.1515/bchm2.1970.351.2.1429. [DOI] [PubMed] [Google Scholar]
  12. O'Neill M. C., Stockdale F. E. A kinetic analysis of myogenesis in vitro. J Cell Biol. 1972 Jan;52(1):52–65. doi: 10.1083/jcb.52.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. PHILLIPS A. H., LANGDON R. G. Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J Biol Chem. 1962 Aug;237:2652–2660. [PubMed] [Google Scholar]
  14. Perdue J. F., Sneider J. The isolation and characterization of the plasma membrane from chick embryo fibroblasts. Biochim Biophys Acta. 1970;196(2):125–140. doi: 10.1016/0005-2736(70)90001-5. [DOI] [PubMed] [Google Scholar]
  15. STOCKDALE F., OKAZAKI K., NAMEROFF M., HOLTZER H. 5-BROMODEOXYURIDINE: EFFECT ON MYOGENESIS IN VITRO. Science. 1964 Oct 23;146(3643):533–535. doi: 10.1126/science.146.3643.533. [DOI] [PubMed] [Google Scholar]
  16. Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Touster O., Aronson N. N., Jr, Dulaney J. T., Hendrickson H. Isolation of rat liver plasma membranes. Use of nucleotide pyrophosphatase and phosphodiesterase I as marker enzymes. J Cell Biol. 1970 Dec;47(3):604–618. doi: 10.1083/jcb.47.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vogel Z., Sytkowski A. J., Nirenberg M. W. Acetylcholine receptors of muscle grown in vitro. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3180–3184. doi: 10.1073/pnas.69.11.3180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. WALLACH D. F., ULLREY D. The hydrolysis of ATP and related nucleotides by Ehrlich ascites carcinoma cells. Cancer Res. 1962 Feb;22:228–234. [PubMed] [Google Scholar]
  20. Yaffe D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci U S A. 1968 Oct;61(2):477–483. doi: 10.1073/pnas.61.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES