Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Nov;70(11):3213–3218. doi: 10.1073/pnas.70.11.3213

Regulation of Glucose Synthesis in Hormone-Sensitive Isolated Rat Hepatocytes

Rainer N Zahlten 1,2, Frederick W Stratman 1,2, Henry A Lardy 1,2
PMCID: PMC427203  PMID: 4361684

Abstract

A simplified procedure was developed for isolation of intact, hormone-sensitive liver cells in a high and reproducible yield. These cells produce glucose from various precursors at rates comparable to those achieved in isolated perfused liver. Glucagon enhanced glucose synthesis from pyruvate, dihydroxyacetone, fructose, or xylitol more effectively at low than at high substrate concentration. At high pyruvate concentrations (>2 mM), glucagon or adenosine 3′:5′-cyclic monophosphate (0.1 mM) exerts a curious inhibition of gluconeogenesis that can be reverted to stimulation on addition of ethanol. It is suggested that glucagon and cyclic AMP inhibit pyruvate dehydrogenase and thus limit the supply of reducing equivalents needed for glucose formation. Supporting evidence for hormonal control of pyruvate dehydrogenase in isolated liver cells is provided by the fact that glucagon decreases and insulin increases decarboxylation of [1-14C]pyruvate. Calcium salts (1.3 mM) enhance glucose formation from pyruvate but greatly enhance the inhibition exerted by the divalent cationophore, A23187. Inhibition by glucagon of glucose synthesis from pyruvate is additive with the effects of A23187 + Ca++. However, with dihydroxyacetone as substrate, glucagon partially reverses the inhibition exerted by A23187 + Ca++. The results are consistent with glucagon effecting an inhibition of pyruvate dehydrogenase and a stimulation of hexosediphosphatase activities.

Keywords: glucagon, insulin, pyruvate, pyruvate dehydrogenase, calcium ionophore

Full text

PDF
3213

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berry M. N., Kun E. Rate-limiting steps of gluconeogenesis in liver cells as determined with the aid of fluoro-dicarboxylic acids. Eur J Biochem. 1972 May 23;27(2):395–400. doi: 10.1111/j.1432-1033.1972.tb01850.x. [DOI] [PubMed] [Google Scholar]
  3. Blair J. B., Cook D. E., Lardy H. A. Influence of glucagon on the metabolism of xylitol and dihydroxyacetone in the isolated perfused rat liver. J Biol Chem. 1973 May 25;248(10):3601–3607. [PubMed] [Google Scholar]
  4. Denton R. M., Randle P. J., Martin B. R. Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase. Biochem J. 1972 Jun;128(1):161–163. doi: 10.1042/bj1280161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Exton J. H., Park C. R. Control of gluconeogenesis in liver. 3. Effects of L-lactate, pyruvate, fructose, glucagon, epinephrine, and adenosine 3',5'-monophosphate on gluconeogenic intermediates in the perfused rat liver. J Biol Chem. 1969 Mar 25;244(6):1424–1433. [PubMed] [Google Scholar]
  6. Exton J. H., Park C. R. Control of gluconeogenesis in liver. II. Effects of glucagon, catecholamines, and adenosine 3',5'-monophosphate on gluconeogenesis in the perfused rat liver. J Biol Chem. 1968 Aug 25;243(16):4189–4196. [PubMed] [Google Scholar]
  7. Exton J. H., Robison G. A., Sutherland E. W., Park C. R. Studies on the role of adenosine 3',5'-monophosphate in the hepatic actions of glucagon and catecholamines. J Biol Chem. 1971 Oct 25;246(20):6166–6177. [PubMed] [Google Scholar]
  8. Friedmann N., Park C. R. Early effects of 3',5'-adenosine monophosphate on the fluxes of calcium end potassium in the perfused liver of normal and adrenalectomized rats. Proc Natl Acad Sci U S A. 1968 Oct;61(2):504–508. doi: 10.1073/pnas.61.2.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hayakawa T., Hirashima M., Ide S., Hamada M., Okabe K., Koike M. Mammalian alpha-keto acid dehydrogenase complexes. I. Isolation, purification, and properties of pyruvate dehydrogenase complex of pig heart muscle. J Biol Chem. 1966 Oct 25;241(20):4694–4699. [PubMed] [Google Scholar]
  10. Ingebretsen W. R., Jr, Moxley M. A., Allen D. O., Wagle S. R. Studies on gluconeogenesis, protein synthesis and cyclic AMP levels in isolated parenchymal cells following insulin withdrawal from alloxan diabetic rats. Biochem Biophys Res Commun. 1972 Oct 17;49(2):601–607. doi: 10.1016/0006-291x(72)90453-6. [DOI] [PubMed] [Google Scholar]
  11. Jakob A., Williamson J. R., Asakura T. Xylitol metabolism in perfused rat liver. Interactions with gluconeogenesis and ketogenesis. J Biol Chem. 1971 Dec 25;246(24):7623–7631. [PubMed] [Google Scholar]
  12. Johnson M. E., Das N. M., Butcher F. R., Fain J. N. The regulation of gluconeogenesis in isolated rat liver cells by glucagon, insulin, dibutyryl cyclic adenosine monophosphate, and fatty acids. J Biol Chem. 1972 May 25;247(10):3229–3235. [PubMed] [Google Scholar]
  13. Martin B. R., Denton R. M., Pask H. T., Randle P. J. Mechanisms regulating adipose-tissue pyruvate dehydrogenase. Biochem J. 1972 Sep;129(3):763–773. doi: 10.1042/bj1290763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Patzelt C., Löffler G., Wieland O. H. Interconversion of pyruvate dehydrogenase in the isolated perfused rat liver. Eur J Biochem. 1973 Feb 15;33(1):117–122. doi: 10.1111/j.1432-1033.1973.tb02662.x. [DOI] [PubMed] [Google Scholar]
  15. Pettit F. H., Roche T. E., Reed L. J. Function of calcium ions in pyruvate dehydrogenase phosphatase activity. Biochem Biophys Res Commun. 1972 Oct 17;49(2):563–571. doi: 10.1016/0006-291x(72)90448-2. [DOI] [PubMed] [Google Scholar]
  16. Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
  17. Ross B. D., Hems R., Krebs H. A. The rate of gluconeogenesis from various precursors in the perfused rat liver. Biochem J. 1967 Mar;102(3):942–951. doi: 10.1042/bj1020942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Seglen P. O. Preparation of rat liver cells. I. Effect of Ca 2+ on enzymatic dispersion of isolated, perfused liver. Exp Cell Res. 1972 Oct;74(2):450–454. doi: 10.1016/0014-4827(72)90400-4. [DOI] [PubMed] [Google Scholar]
  19. Stubbs M., Veech R. L., Krebs H. A. Control of the redox state of the nicotinamide-adenine dinucleotide couple in rat liver cytoplasm. Biochem J. 1972 Jan;126(1):59–65. doi: 10.1042/bj1260059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Veneziale C. M. Gluconeogenesis from D-glyceraldehyde and dihydroxyacetone in isolated rat liver. Stimulation by glucagon. Biochemistry. 1972 Aug 15;11(17):3286–3289. doi: 10.1021/bi00767a025. [DOI] [PubMed] [Google Scholar]
  21. Veneziale C. M. Gluconeogenesis from fructose in isolated rat liver. Stimulation by glucagon. Biochemistry. 1971 Aug 31;10(18):3443–3447. doi: 10.1021/bi00794a020. [DOI] [PubMed] [Google Scholar]
  22. Wieland O. H., Patzelt C., Löffler G. Active and inactive forms of pyruvate dehydrogenase in rat liver. Effect of starvation and refeeding and of insulin treatment on pyruvate-dehydrogenase interconversion. Eur J Biochem. 1972 Apr 11;26(3):426–433. doi: 10.1111/j.1432-1033.1972.tb01783.x. [DOI] [PubMed] [Google Scholar]
  23. Williamson J. R., Browning E. T., Scholz R. Control mechanisms of gluconeogenesis and ketogenesis. I. Effects of oleate on gluconeogenesis in perfused rat liver. J Biol Chem. 1969 Sep 10;244(17):4607–4616. [PubMed] [Google Scholar]
  24. Williamson J. R., Scholz R., Browning E. T., Thurman R. G., Fukami M. H. Metabolic effects of ethanol in perfused rat liver. J Biol Chem. 1969 Sep 25;244(18):5044–5054. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES