Abstract
The circular dichroism of hypothetical, water-filled, spherical shells, 75-3500 nm in radius, with walls 7.5 nm thick, composed of poly(L-lysine) in various conformational proportions, and suspended in water, were computed from the known optical properties of this polypeptide by classical general light-scattering theory (Mie theory). Comparison of the computed curves of circular dichroism spectra with those of diverse membranes reveals large discrepancies below 215 nm and shows that light scattering does not adequately account for the optical activity of membranes containing appreciable proportions of nonhelical conformation. However, turbidity effects can explain the anomalies of membrane optical rotatory dispersion near 233 nm, if not uniquely so. We conclude that the optical activity of neither most soluble proteins nor membrane proteins can provide accurate conformational information when synthetic polypeptides are used as standards and list the reasons for this argument. We also show that present techniques to “correct” membrane optical activity are likely to produce additional artifact.
Keywords: light scattering, poly(L-lysine), circular dichroism
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avruch J., Wallach D. F. Spectroscopic evidence for beta structure in rat adipocyte plasma membrane protein. Biochim Biophys Acta. 1971 Jul 6;241(1):249–253. doi: 10.1016/0005-2736(71)90322-1. [DOI] [PubMed] [Google Scholar]
- Bertland A. U., 2nd, Kalckar H. M. Reversible changes of ordered polypeptide structures in oxidized and reduced epimerase. Proc Natl Acad Sci U S A. 1968 Oct;61(2):629–635. doi: 10.1073/pnas.61.2.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertland L. H., Bertland A. U., 2nd Ionic strength dependent dissociation and association of yeast uridine diphosphate galactose 4-epimerase subunits. Biochemistry. 1971 Aug 3;10(16):3145–3151. doi: 10.1021/bi00792a025. [DOI] [PubMed] [Google Scholar]
- Birktoft J. J., Blow D. M., Henderson R., Steitz T. A. I. Serine proteinases. The structure of alpha-chymotrypsin. Philos Trans R Soc Lond B Biol Sci. 1970 Feb 12;257(813):67–76. doi: 10.1098/rstb.1970.0009. [DOI] [PubMed] [Google Scholar]
- Blake C. C., Koenig D. F., Mair G. A., North A. C., Phillips D. C., Sarma V. R. Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature. 1965 May 22;206(4986):757–761. doi: 10.1038/206757a0. [DOI] [PubMed] [Google Scholar]
- Chapman D., Kamat V. B., de Gier J., Penkett S. A. Nuclear magnetic resonance studies of erythrocyte membranes. J Mol Biol. 1968 Jan 14;31(1):101–114. doi: 10.1016/0022-2836(68)90058-2. [DOI] [PubMed] [Google Scholar]
- Chen Y. H., Yang J. T., Martinez H. M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry. 1972 Oct 24;11(22):4120–4131. doi: 10.1021/bi00772a015. [DOI] [PubMed] [Google Scholar]
- Choules G. L., Bjorklund R. F. Evidence of beta structure in Mycoplasma membranes. Circular dichroism, optical rotatory dispersion, and infrared studies. Biochemistry. 1970 Nov 24;9(24):4759–4767. doi: 10.1021/bi00826a020. [DOI] [PubMed] [Google Scholar]
- Dearborn D. G., Wetlaufer D. B. Circular dichroism of putative unordered polypeptides and proteins. Biochem Biophys Res Commun. 1970 May 11;39(3):314–320. doi: 10.1016/0006-291x(70)90578-4. [DOI] [PubMed] [Google Scholar]
- Dunnick J. K., Marinetti G. V., Greenland P. Effect of detergents and sodium fluoride on the enzyme activities of the rat liver plasma membrane. Biochim Biophys Acta. 1972 Jun 20;266(3):684–694. doi: 10.1016/0006-3002(72)90011-x. [DOI] [PubMed] [Google Scholar]
- Fasman G. D., Hoving H., Timasheff S. N. Circular dichroism of polypeptide and protein conformations. Film studies. Biochemistry. 1970 Aug 18;9(17):3316–3324. doi: 10.1021/bi00819a005. [DOI] [PubMed] [Google Scholar]
- GRABAR P. Biological actions of ultrasonic waves. Adv Biol Med Phys. 1953;3:191–246. doi: 10.1016/b978-1-4831-9926-9.50009-4. [DOI] [PubMed] [Google Scholar]
- Glaser M., Singer S. J. Circular dichroism and the conformations of membrane proteins. Studies with red blood cell membranes. Biochemistry. 1971 May 11;10(10):1780–1787. doi: 10.1021/bi00786a008. [DOI] [PubMed] [Google Scholar]
- Gordon A. S., Wallach D. F., Straus J. H. The optical activity of plasma membranes and its modification by lysolecithin, phospholipase A and phospholipase C. Biochim Biophys Acta. 1969;183(3):405–416. doi: 10.1016/0005-2736(69)90155-2. [DOI] [PubMed] [Google Scholar]
- Gordon D. J., Holzwarth G. Artifacts in the measured optic activity of membrane suspensions. Arch Biochem Biophys. 1971 Feb;142(2):481–488. doi: 10.1016/0003-9861(71)90511-x. [DOI] [PubMed] [Google Scholar]
- Gordon D. J., Holzwarth G. Optical activity of membrane suspensions: calculation of artifacts by Mie scattering theory. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2365–2369. doi: 10.1073/pnas.68.10.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon D. J. Mie scattering by optically active particles. Biochemistry. 1972 Feb 1;11(3):413–420. doi: 10.1021/bi00753a018. [DOI] [PubMed] [Google Scholar]
- Graham J. M., Wallach D. F. Energy-dependent protein conformational transitions in mitochondrial membranes. Biochim Biophys Acta. 1969 Oct 14;193(1):225–227. doi: 10.1016/0005-2736(69)90078-9. [DOI] [PubMed] [Google Scholar]
- Graham J. M., Wallach D. F. Protein conformational transitions in the erythrocyte membrane. Biochim Biophys Acta. 1971 Jul 6;241(1):180–194. doi: 10.1016/0005-2736(71)90315-4. [DOI] [PubMed] [Google Scholar]
- Greenfield N., Davidson B., Fasman G. D. The use of computed optical rotatory dispersion curves for the evaluation of protein conformation. Biochemistry. 1967 Jun;6(6):1630–1637. doi: 10.1021/bi00858a009. [DOI] [PubMed] [Google Scholar]
- Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
- Haughton G. Transplantation antigen of mice: cellular localization of antigen determined by the H-2 locus. Transplantation. 1966 May;4(3):238–244. doi: 10.1097/00007890-196605000-00002. [DOI] [PubMed] [Google Scholar]
- Lenard J., Singer S. J. Protein conformation in cell membrane preparations as studied by optical rotatory dispersion and circular dichroism. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1828–1835. doi: 10.1073/pnas.56.6.1828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magar M. E. On the possibility of determining the secondary structure of proteins in solution. J Theor Biol. 1971 Oct;33(1):105–119. doi: 10.1016/0022-5193(71)90219-0. [DOI] [PubMed] [Google Scholar]
- Malcolm B. R. Surface chemistry of poly (beta-benzyl L-aspartate). Biopolymers. 1970;9(8):911–922. doi: 10.1002/bip.1970.360090805. [DOI] [PubMed] [Google Scholar]
- Masotti L., Urry D. W., Krivacic J. R., Long M. M. Circular dichroism of biological membranes. II. Plasma membranes and sarcotubular vesicles. Biochim Biophys Acta. 1972 Apr 14;266(1):7–17. doi: 10.1016/0005-2736(72)90114-9. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., Muirhead H., Cox J. M., Goaman L. C. Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 A resolution: the atomic model. Nature. 1968 Jul 13;219(5150):131–139. doi: 10.1038/219131a0. [DOI] [PubMed] [Google Scholar]
- Rosenkranz H., Scholtan W. Eine verbesserte Methode zur Konformationsbestimmung von helicalen Proteinen aus Messungen des Circulardichroismus. Hoppe Seylers Z Physiol Chem. 1971 Jul;352(7):896–904. [PubMed] [Google Scholar]
- Sarkar P. K., Doty P. The optical rotatory properties of the beta-configuration in polypeptides and proteins. Proc Natl Acad Sci U S A. 1966 Apr;55(4):981–989. doi: 10.1073/pnas.55.4.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saxena V. P., Wetlaufer D. B. A new basis for interpreting the circular dichroic spectra of proteins. Proc Natl Acad Sci U S A. 1971 May;68(5):969–972. doi: 10.1073/pnas.68.5.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider A. S., Schneider M. J., Rosenheck K. Optical activity of biological membranes: scattering effects and protein conformation. Proc Natl Acad Sci U S A. 1970 Jul;66(3):793–798. doi: 10.1073/pnas.66.3.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singer J. A., Morrison M. Circular dichroism of human erythrocyte membranes solubilized by N-pentanol. Biochim Biophys Acta. 1972 Jul 3;274(1):64–70. doi: 10.1016/0005-2736(72)90280-5. [DOI] [PubMed] [Google Scholar]
- Steck T. L., Weinstein R. S., Straus J. H., Wallach D. F. Inside-out red cell membrane vesicles: preparation and purification. Science. 1970 Apr 10;168(3928):255–257. doi: 10.1126/science.168.3928.255. [DOI] [PubMed] [Google Scholar]
- Stevens L., Townend R., Timasheff S. N., Fasman G. D., Potter J. The circular dichroism of polypeptide films. Biochemistry. 1968 Oct;7(10):3717–3720. doi: 10.1021/bi00850a051. [DOI] [PubMed] [Google Scholar]
- Straus J. H., Gordon A. S., Wallach D. F. The influence of tertiary structure upon the optical activity of three globular proteins: myoglobin, hemoglobin and lysozyme. Eur J Biochem. 1969 Dec;11(2):201–212. [PubMed] [Google Scholar]
- Stryer L. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites. J Mol Biol. 1965 Sep;13(2):482–495. doi: 10.1016/s0022-2836(65)80111-5. [DOI] [PubMed] [Google Scholar]
- Tooney N. M., Fasman G. D. Conformation of serine polypeptides. Optical rotatory dispersion and infrared studies. J Mol Biol. 1968 Sep 28;36(3):355–369. doi: 10.1016/0022-2836(68)90161-7. [DOI] [PubMed] [Google Scholar]
- Urry D. W. Protein conformation in biomembranes: optical rotation and absorption of membrane suspensions. Biochim Biophys Acta. 1972 Feb 14;265(1):115–168. doi: 10.1016/0304-4157(72)90021-4. [DOI] [PubMed] [Google Scholar]
- WALLACH D. F., KAMAT V. B. PLASMA AND CYTOPLASMIC MEMBRANE FRAGMENTS FROM EHRLICH ASCITES CARCINOMA. Proc Natl Acad Sci U S A. 1964 Sep;52:721–728. doi: 10.1073/pnas.52.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallach D. F., Kamat V. B., Gail M. H. Physicochemical differences between fragments of plasma membrane and endoplasmic reticulum. J Cell Biol. 1966 Sep;30(3):601–621. doi: 10.1083/jcb.30.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallach D. F., Zahler P. H. Infrared spectra of plasma membrane and endoplasmic reticulum of Ehrlich ascites carcinoma. Biochim Biophys Acta. 1968 Mar 1;150(2):186–193. doi: 10.1016/0005-2736(68)90162-4. [DOI] [PubMed] [Google Scholar]
- Wallach D. F., Zahler P. H. Protein conformations in cellular membranes. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1552–1559. doi: 10.1073/pnas.56.5.1552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yaron A., Katchalski E., Berger A., Fasman G. D., Sober H. A. The chain length dependence of the conformation for oligomers of L-lysine in aqueous solution: optical rotatory dispersion studies. Biopolymers. 1971;10(7):1107–1120. doi: 10.1002/bip.360100703. [DOI] [PubMed] [Google Scholar]
