Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Nov;70(11):3245–3249. doi: 10.1073/pnas.70.11.3245

Separate Intramolecular Pathways for Reduction and Oxidation of Cytochrome c in Electron Transport Chain Reactions

E Margoliash *,, Shelagh Ferguson-Miller *,, J Tulloss *,, Chae Hee Kang *,, B A Feinberg *,, D L Brautigan *,, M Morrison *
PMCID: PMC427209  PMID: 4361686

Abstract

The monoiodotyrosine 74, formyltryptophan 59, mononitrotyrosine 67, and carboxymethylmethionine 80 derivatives of horse cytochrome c are defective in their ability to accept electrons from the succinate-cytochrome c reductase system, while their reactions with purified cytochrome c oxidase are essentially those of the native protein. The 4-nitrobenzo-2-oxa-1,3-diazole derivative of lysine 13 of horse cytochrome c and the bis-phenylglyoxal derivative of arginine 13 of Candida krusei cytochrome c have the opposite properties, in that they are readily reduced by the succinate-cytochrome c reductase (EC 1.3.99.1) system but are defective in their capability of transferring electrons to cytochrome c oxidase (EC 1.9.3.1). We conclude that electrons from mitochondrial cytochrome c reductase are transmitted to ferricytochrome c by a different pathway than electrons from ferrocytochrome c to cytochrome c oxidase. The present results are compatible with the concept that the mechanism of reduction involves an aromatic ring channel comprising residues 74, 59, 67, and 80, leading from the “left back” part of the protein to the heme iron. On the other hand, since residue 13 is immediately above the edge of the heme that is at the “front surface” of the molecule, we suggest that the electron leaves ferrocytochrome c to cytochrome c oxidase by way of the edge of pyrrole ring II or the adjacent surface-located sulfur of cysteinyl residue 17, which is thioether bonded to the heme. On this basis, the sites of electron entry and exit in cytochrome c would appear to be some 110° of arc away from each other along the surface of the protein, explaining several previously observed phenomena.

Keywords: monoiodotyrosine 74 cytochrome c; 4-nitrobenzo-2-oxa-1,3-diazole lysine 13 cytochrome c; bis-phenylglyoxal arginine 13 cytochrome c

Full text

PDF
3245

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aviram I., Schejter A. Modification of the tryptophanyl residue of horse heart cytochrome c. Biochim Biophys Acta. 1971 Jan 19;229(1):113–118. doi: 10.1016/0005-2795(71)90324-2. [DOI] [PubMed] [Google Scholar]
  2. Barlow G. H., Margoliash E. Electrophoretic behavior of mammalian-type cytochromes c. J Biol Chem. 1966 Apr 10;241(7):1473–1477. [PubMed] [Google Scholar]
  3. Dickerson R. E., Takano T., Eisenberg D., Kallai O. B., Samson L., Cooper A., Margoliash E. Ferricytochrome c. I. General features of the horse and bonito proteins at 2.8 A resolution. J Biol Chem. 1971 Mar 10;246(5):1511–1535. [PubMed] [Google Scholar]
  4. JACOBS E. E., SANADI D. R. The reversible removal of cytochrome c from mitochondria. J Biol Chem. 1960 Feb;235:531–534. [PubMed] [Google Scholar]
  5. Keller R. M., Aviram I., Schejter A., Wüthrich K. Evidence for pentacoordinated iron (II) in carboxymethylated cytochrome c. FEBS Lett. 1972 Jan 15;20(1):90–92. doi: 10.1016/0014-5793(72)80024-3. [DOI] [PubMed] [Google Scholar]
  6. Kowalsky A. A study of the mechanism of electron transfer in cytochrome c. Chromium as a probe. J Biol Chem. 1969 Dec 25;244(24):6619–6625. [PubMed] [Google Scholar]
  7. MARGOLIASH E., SMITH E. L. Isolation and amino acid composition of chymotryptic peptides from horse heart cytochrome c. J Biol Chem. 1962 Jul;237:2151–2160. [PubMed] [Google Scholar]
  8. Margoliash E., Barlow G. H., Byers V. Differential binding properties of cytochrome c: possible relevance for mitochondrial ion transport. Nature. 1970 Nov 21;228(5273):723–726. doi: 10.1038/228723a0. [DOI] [PubMed] [Google Scholar]
  9. Margoliash E. The molecular variations of cytochrome c as a function of the evolution of species. Harvey Lect. 1971;66:177–247. [PubMed] [Google Scholar]
  10. Morrison M., Bayse G. S., Webster R. G. Use of lactoperoxidase catalyzed iodination in immunochemical studies. Immunochemistry. 1971 Mar;8(3):289–297. doi: 10.1016/0019-2791(71)90484-8. [DOI] [PubMed] [Google Scholar]
  11. Myer Y. P., Pal P. K. Spectroscopic properties of N-bromosuccinimide-modified horse heart cytochrome c + . Biochemistry. 1972 Nov 7;11(23):4209–4216. doi: 10.1021/bi00773a003. [DOI] [PubMed] [Google Scholar]
  12. Nisonoff A., Reichlin M., Margoliash E. Immunological activity of cytochrome c. II. Localization of a major antigenic determinant of human cytochrome c. J Biol Chem. 1970 Mar 10;245(5):940–946. [PubMed] [Google Scholar]
  13. Noble R. W., Reichlin M., Schreiber R. D. Studies on antibodies directed toward single antigenic sites on globular proteins. Biochemistry. 1972 Aug 29;11(18):3326–3332. doi: 10.1021/bi00768a004. [DOI] [PubMed] [Google Scholar]
  14. Nolan C., Margoliash E. Comparative aspects of primary structures of proteins. Annu Rev Biochem. 1968;37:727–790. doi: 10.1146/annurev.bi.37.070168.003455. [DOI] [PubMed] [Google Scholar]
  15. Nolan C., Margoliash E. Primary structure of the cytochrome c from the great grey kangaroo, Macropus canguru. J Biol Chem. 1966 Mar 10;241(5):1049–1059. [PubMed] [Google Scholar]
  16. Redfield A. G., Gupta R. K. Pulsed NMR study of the structure of cytochrome c. Cold Spring Harb Symp Quant Biol. 1972;36:405–411. doi: 10.1101/sqb.1972.036.01.052. [DOI] [PubMed] [Google Scholar]
  17. Schejter A., Aviram I., Sokolovsky M. Nitrocytochrome c. II. Spectroscopic properties and chemical reactivity. Biochemistry. 1970 Dec 22;9(26):5118–5122. doi: 10.1021/bi00828a012. [DOI] [PubMed] [Google Scholar]
  18. Schejter A., Aviram I. The effects of alkylation of methionyl residues on the properties of horse cytochrome c. J Biol Chem. 1970 Apr 10;245(7):1552–1557. [PubMed] [Google Scholar]
  19. Skov K., Hofmann T., Williams G. R. The nitration of cytochrome c. Can J Biochem. 1969 Jul;47(7):750–752. doi: 10.1139/o69-114. [DOI] [PubMed] [Google Scholar]
  20. Smith L., Davies H. C., Reichlin M., Margoliash E. Separate oxidase and reductase reaction sites on cytochrome c demonstrated with purified site-specific antibodies. J Biol Chem. 1973 Jan 10;248(1):237–243. [PubMed] [Google Scholar]
  21. Sokolovsky M., Aviram I., Schejter A. Nitrocytochrome c. I. Structure and enzymic properties. Biochemistry. 1970 Dec 22;9(26):5113–5118. doi: 10.1021/bi00828a011. [DOI] [PubMed] [Google Scholar]
  22. Takano T., Kallai O. B., Swanson R., Dickerson R. E. The structure of ferrocytochrome c at 2.45 A resolution. J Biol Chem. 1973 Aug 10;248(15):5234–5255. [PubMed] [Google Scholar]
  23. Wada K., Okunuki K. Studies on chemically modified cytochrome c. II. The trinitrophenylated cytochrome c. J Biochem. 1969 Aug;66(2):249–262. doi: 10.1093/oxfordjournals.jbchem.a129141. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES