Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Dec;70(12 Pt 1-2):3282–3286. doi: 10.1073/pnas.70.12.3282

Multiple Forms of Elongation Factor 1 from Calf Brain

Hong-Mo Moon *, Betty Redfield *, Sara Millard *, Floie Vane *, Herbert Weissbach *
PMCID: PMC427220  PMID: 4519622

Abstract

Heavy and light forms of elongation factor 1 (EF-1) from calf brain have been partially purified. The heterogeneous heavy species (EF-1H) with molecular weights of 2.5 × 105 to over 1 × 106 appears to be a complex or aggregate of the light form of the enzyme (EF-1L); the latter has a molecular weight of between 50,000 and 60,000. EF-1H but not EF-1L, contains significant amounts of free and esterified cholesterol. Although EF-1H and EF-1L are both active in aminoacyl-tRNA binding to ribosomes, EF-1L reacts with GTP and aminoacyl-tRNA more efficiently than EF-1H.

Keywords: cholesterol, protein synthesis

Full text

PDF
3282

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bandyopadhyay A. K., Deutscher M. P. Lipids associated with the aminoacyl-transfer RNA synthetase complex. J Mol Biol. 1973 Feb 25;74(2):257–261. doi: 10.1016/0022-2836(73)90112-5. [DOI] [PubMed] [Google Scholar]
  2. Beaud G., Lengyel P. Peptide chain elongation. Role of the S 1 factor in the pathway from S 3 -guanosine diphosphate complex to aminoacyl transfer ribonucleic acid-S 3 -guanosine triphosphate complex. Biochemistry. 1971 Dec 21;10(26):4899–4906. doi: 10.1021/bi00802a011. [DOI] [PubMed] [Google Scholar]
  3. Bondjers G., Björkerud S. Fluorometric determination of cholesterol and cholesteryl ester in tissue on the nanogram level. Anal Biochem. 1971 Aug;42(2):363–371. doi: 10.1016/0003-2697(71)90049-2. [DOI] [PubMed] [Google Scholar]
  4. Collins J. F., Moon H. M., Maxwell E. S. Multiple forms and some properties of aminoacyltransferase I (elongation factor I) from rat liver. Biochemistry. 1972 Oct 24;11(22):4187–4194. doi: 10.1021/bi00772a024. [DOI] [PubMed] [Google Scholar]
  5. Hradec J., Dusek Z., Bermek E., Matthaei H. The role of cholesteryl 14-methylhexadecanoate in peptide elongation reactions. Biochem J. 1971 Aug;123(5):959–966. doi: 10.1042/bj1230959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hradec J., Dusek Z. Effect of lipids, in particular cholesteryl 14-methylhexadecanoate, on the incorporation of labelled amino acids into transfer ribonucleic acid in vitro. Biochem J. 1968 Nov;110(1):1–8. doi: 10.1042/bj1100001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  9. McKeehan W. L., Hardesty B. Purification and partial characterization of the aminoacyl transfer ribonucleic acid binding enzyme from rabbit reticulocytes. J Biol Chem. 1969 Aug 25;244(16):4330–4339. [PubMed] [Google Scholar]
  10. Miller D. L., Weissbach H. Interactions between the elongation factors: the displacement of GPD from the TU-GDP complex by factor Ts. Biochem Biophys Res Commun. 1970 Mar 27;38(6):1016–1022. doi: 10.1016/0006-291x(70)90341-4. [DOI] [PubMed] [Google Scholar]
  11. Moon H. M., Redfield B., Weissbach H. Interaction of eukaryote elongation factor EF 1 with guanosine nucleotides and aminoacyl-tRNA. Proc Natl Acad Sci U S A. 1972 May;69(5):1249–1252. doi: 10.1073/pnas.69.5.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moon H. M., Weissbach H. Interaction of brain transferase I with guanosine nucleotides and aminoacyl-tRNA. Biochem Biophys Res Commun. 1972 Jan 14;46(1):254–262. doi: 10.1016/0006-291x(72)90657-2. [DOI] [PubMed] [Google Scholar]
  13. Schneir M., Moldave K. The isolation and biological activity of multiple forms of aminoacyl transferase I of rat liver. Biochim Biophys Acta. 1968 Aug 23;166(1):58–67. doi: 10.1016/0005-2787(68)90490-5. [DOI] [PubMed] [Google Scholar]
  14. Weissbach H., Miller D. L., Hachmann J. Studies on the role of factor Ts in polypeptide synthesis. Arch Biochem Biophys. 1970 Mar;137(1):262–269. doi: 10.1016/0003-9861(70)90433-9. [DOI] [PubMed] [Google Scholar]
  15. Weissbach H., Redfield B., Brot N. Further studies on the role of factors Ts and Tu in protein synthesis. Arch Biochem Biophys. 1971 May;144(1):224–229. doi: 10.1016/0003-9861(71)90472-3. [DOI] [PubMed] [Google Scholar]
  16. Weissbach H., Redfield B., Hachmann J. Studies on the role of factor Ts in aminoacyl-tRNA binding to ribosomes. Arch Biochem Biophys. 1970 Nov;141(1):384–386. doi: 10.1016/0003-9861(70)90150-5. [DOI] [PubMed] [Google Scholar]
  17. Weissbach H., Redfield B., Moon H. M. Further studies on the interactions of elongation factor 1 from animal tissues. Arch Biochem Biophys. 1973 May;156(1):267–275. doi: 10.1016/0003-9861(73)90365-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES