Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Dec;70(12 Pt 1-2):3324–3328. doi: 10.1073/pnas.70.12.3324

A General Theory of Carcinogenesis

David E Comings 1
PMCID: PMC427229  PMID: 4202843

Abstract

A general hypothesis of carcinogenesis is proposed consisting of the following features: (1) It is suggested that all cells possess multiple structural genes (Tr) capable of coding for transforming factors which can release the cell from its normal constraints on growth. (2) In adult cells they are suppressed by diploid pairs of regulatory genes and some of the transforming genes are tissue specific. (3) The Tr loci are temporarily activated at some stage of embryogenesis and possibly during some stage of the cell cycle in adult cells. (4) Spontaneous tumors, or tumors induced by chemicals or radiation, arise as the result of a double mutation of any set of regulatory genes releasing the suppression of the corresponding Tr genes and leading to transformation of the cell. (5) Autosomal dominant hereditary tumors, such as retinoblastoma, are the result of germ-line inheritance of one inactive regulatory gene. Subsequent somatic mutation of the other regulatory gene leads to tumor formation. (6) The Philadelphia chromosome produces inactivation of one regulatory gene by position effect. A somatic mutation of the other leads to chronic myelogenous leukemia. (7) Oncogenic viruses evolved by the extraction of host Tr genes with their conversion to viral transforming genes. As a result, in addition to the above mechanisms, tumors may also be produced by the reintroduction of these genes into susceptible host cells.

Keywords: genes, viruses

Full text

PDF
3324

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anders F. Tumour formation in platyfish-swordtail hybrids as a problem of gene regulation. Experientia. 1967 Jan 15;23(1):1–10. doi: 10.1007/BF02142235. [DOI] [PubMed] [Google Scholar]
  2. Ashley D. J. The two "hit" and multiple "hit" theories of carcinogenesis. Br J Cancer. 1969 Jun;23(2):313–328. doi: 10.1038/bjc.1969.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Basilico C., Burstin S. J. Multiplication of polyoma virus in mouse-hamster somatic hybrids: a hybrid cell line which produces viral particles containing predominantly host deoxyribonucleic acid. J Virol. 1971 Jun;7(6):802–812. doi: 10.1128/jvi.7.6.802-812.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bürk R. R. A factor from a transformed cell line that affects cell migration. Proc Natl Acad Sci U S A. 1973 Feb;70(2):369–372. doi: 10.1073/pnas.70.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davidson R. L. Regulation of malanin synthesis in mammalian cells: effect of gene dosage on the expression of differentiation. Proc Natl Acad Sci U S A. 1972 Apr;69(4):951–955. doi: 10.1073/pnas.69.4.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Di Mayorca G., Greenblatt M., Trauthen T., Soller A., Giordano R. Malignant transformation of BHK21 clone 13 cells in vitro by nitrosamines--a conditional state. Proc Natl Acad Sci U S A. 1973 Jan;70(1):46–49. doi: 10.1073/pnas.70.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DiPaolo J. A., Donovan P. J., Nelson R. L. X-irradiation enhancement of transformation by benzo(a)pyrene in hamster embryo cells. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1734–1737. doi: 10.1073/pnas.68.8.1734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dulbecco R., Eckhart W. Temperature-dependent properties of cells transformed by a thermosensitive mutant of polyoma virus. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1775–1781. doi: 10.1073/pnas.67.4.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eckhart W., Dulbecco R., Burger M. M. Temperature-dependent surface changes in cells infected or transformed by a thermosensitive mutant of polyoma virus. Proc Natl Acad Sci U S A. 1971 Feb;68(2):283–286. doi: 10.1073/pnas.68.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ezdinli E. Z., Sokal J. E., Crosswhite L., Sandberg A. A. Philadelphia-chromosome-positive and -negative chronic myelocytic leukemia. Ann Intern Med. 1970 Feb;72(2):175–182. doi: 10.7326/0003-4819-72-2-175. [DOI] [PubMed] [Google Scholar]
  11. Fougère C., Ruiz F., Ephrussi B. Gene dosage dependence of pigment synthesis in melanoma x fibroblast hybrids (hamster cells-mouse fibroblast-DOPA-oxidase-irradiation). Proc Natl Acad Sci U S A. 1972 Feb;69(2):330–334. doi: 10.1073/pnas.69.2.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GORDON M. The variable expressivity of a pigment cell gene from zero effect to melanotic tumor induction. Cancer Res. 1951 Sep;11(9):676–686. [PubMed] [Google Scholar]
  13. Harris H., Miller O. J., Klein G., Worst P., Tachibana T. Suppression of malignancy by cell fusion. Nature. 1969 Jul 26;223(5204):363–368. doi: 10.1038/223363a0. [DOI] [PubMed] [Google Scholar]
  14. Hitotsumachi S., Rabinowitz Z., Sachs L. Ciromosomal control of reversion in transformed cells. Nature. 1971 Jun 25;231(5304):511–514. doi: 10.1038/231511a0. [DOI] [PubMed] [Google Scholar]
  15. Jensen R. D., Miller R. W. Retinoblastoma: epidemiologic characteristics. N Engl J Med. 1971 Aug 5;285(6):307–311. doi: 10.1056/NEJM197108052850602. [DOI] [PubMed] [Google Scholar]
  16. Klein G., Bregula U., Wiener F., Harris H. The analysis of malignancy by cell fusion. I. Hybrids between tumour cells and L cell derivatives. J Cell Sci. 1971 May;8(3):659–672. doi: 10.1242/jcs.8.3.659. [DOI] [PubMed] [Google Scholar]
  17. Knudson A. G., Jr Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971 Apr;68(4):820–823. doi: 10.1073/pnas.68.4.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lyon M. F., Phillips R. J., Bailey H. J. Mutagenic effects of repeated small radiation doses to mouse spermatogonia. I. Specific-locus mutation rates. Mutat Res. 1972 Jun;15(2):185–190. doi: 10.1016/0027-5107(72)90031-0. [DOI] [PubMed] [Google Scholar]
  19. Macpherson I. Reversion in Hamster Cells Transformed by Rous Sarcoma Virus. Science. 1965 Jun 25;148(3678):1731–1733. doi: 10.1126/science.148.3678.1731. [DOI] [PubMed] [Google Scholar]
  20. Markert C. L. Neoplasia: a disease of cell differentiation. Cancer Res. 1968 Sep;28(9):1908–1914. [PubMed] [Google Scholar]
  21. Martin G. S. Rous sarcoma virus: a function required for the maintenance of the transformed state. Nature. 1970 Sep 5;227(5262):1021–1023. doi: 10.1038/2271021a0. [DOI] [PubMed] [Google Scholar]
  22. Minna J., Glazer D., Nirenberg M. Genetic dissection of neural properties using somatic cell hybrids. Nat New Biol. 1972 Feb 23;235(60):225–231. doi: 10.1038/newbio235225a0. [DOI] [PubMed] [Google Scholar]
  23. Mitelman F., Levan G. The chromosomes of primary 7,12-dimethylbenz(a)anthracene-induced rat sarcomas. Hereditas. 1972;71(2):325–334. doi: 10.1111/j.1601-5223.1972.tb01029.x. [DOI] [PubMed] [Google Scholar]
  24. Mitelman F., Mark J., Levan G., Levan A. Tumor etiology and chromosome pattern. Science. 1972 Jun 23;176(4041):1340–1341. doi: 10.1126/science.176.4041.1340. [DOI] [PubMed] [Google Scholar]
  25. Murayama-Okabayashi F., Okada Y., Tachibana T. A series of hybrid cells containing different ratios of parental chromosomes formed by two steps of artificial fusion. Proc Natl Acad Sci U S A. 1971 Jan;68(1):38–42. doi: 10.1073/pnas.68.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Murayama F., Okada Y. Appearance, characteristics and malignancy of somatic hybrid cells between L and Ehrlich ascites tumor cells formed by artificial fusion with UV-HVJ. Biken J. 1970 Mar;13(1):11–23. [PubMed] [Google Scholar]
  27. NOWELL P. C., HUNGERFORD D. A. Chromosome studies in human leukemia. II. Chronic granulocytic leukemia. J Natl Cancer Inst. 1961 Nov;27:1013–1035. [PubMed] [Google Scholar]
  28. Ono S. Genetic implication of karyological instability of malignant somatic cells. Physiol Rev. 1971 Jul;51(3):496–526. doi: 10.1152/physrev.1971.51.3.496. [DOI] [PubMed] [Google Scholar]
  29. Ozanne B., Sambrook J. Binding of radioactively labelled concanavalin A and wheat germ agglutinin to normal and virus-transformed cells. Nat New Biol. 1971 Aug 4;232(31):156–160. doi: 10.1038/newbio232156a0. [DOI] [PubMed] [Google Scholar]
  30. PIERCE G. B., Jr, DIXON F. J., Jr, VERNEY E. L. Teratocarcinogenic and tissue-forming potentials of the cell types comprising neoplastic embryoid bodies. Lab Invest. 1960 Nov-Dec;9:583–602. [PubMed] [Google Scholar]
  31. Peterson J. A., Weiss M. C. Expression of differentiated functions in hepatoma cell hybrids: induction of mouse albumin production in rat hepatoma-mouse fibroblast hybrids. Proc Natl Acad Sci U S A. 1972 Mar;69(3):571–575. doi: 10.1073/pnas.69.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pogosianz H. E., Prigogina E. L. Chromosome abnormalities and carcinogenesis. Neoplasma. 1972;19(4):319–325. [PubMed] [Google Scholar]
  33. Pollock E. J., Todaro G. J. Radiation enhancement of SV40 transformation in 3T3 and human cells. Nature. 1968 Aug 3;219(5153):520–521. doi: 10.1038/219520a0. [DOI] [PubMed] [Google Scholar]
  34. RUSSELL W. L. An augmenting effect of dose fractionation on radiation-induced mutation rate in mice. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1724–1727. doi: 10.1073/pnas.48.10.1724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rowley J. D. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973 Jun 1;243(5405):290–293. doi: 10.1038/243290a0. [DOI] [PubMed] [Google Scholar]
  36. Silagi S., Bruce S. A. Suppression of malignancy and differentiation in melanotic melanoma cells. Proc Natl Acad Sci U S A. 1970 May;66(1):72–78. doi: 10.1073/pnas.66.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tjio J. H., Carbone P. P., Whang J., Frei E., 3rd The Philadelphia chromosome and chronic myelogenous leukemia. J Natl Cancer Inst. 1966 Apr;36(4):567–584. doi: 10.1093/jnci/36.4.567. [DOI] [PubMed] [Google Scholar]
  38. Todaro G. J., Green H., Swift M. R. Susceptibility of human diploid fibroblast strains to transformation by SV40 virus. Science. 1966 Sep 9;153(3741):1252–1254. doi: 10.1126/science.153.3741.1252. [DOI] [PubMed] [Google Scholar]
  39. Todaro G. J., Huebner R. J. N.A.S. symposium: new evidence as the basis for increased efforts in cancer research. Proc Natl Acad Sci U S A. 1972 Apr;69(4):1009–1015. doi: 10.1073/pnas.69.4.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Todaro G. J., Lazar G. K., Green H. The initiation of cell division in a contact-inhibited mammalian cell line. J Cell Physiol. 1965 Dec;66(3):325–333. doi: 10.1002/jcp.1030660310. [DOI] [PubMed] [Google Scholar]
  41. Todaro G. J. Variable susceptibility of human cell strains to SV40 transformation. Natl Cancer Inst Monogr. 1968 Dec;29:271–275. [PubMed] [Google Scholar]
  42. VISFELDT J. TRANSFORMATION OF SYMPATHICOBLASTOMA INTO GANGLIONEUROMA, WITH A CASE REPORT. Acta Pathol Microbiol Scand. 1963;58:414–428. doi: 10.1111/j.1699-0463.1963.tb01589.x. [DOI] [PubMed] [Google Scholar]
  43. Whang-Peng J., Canellos G. P., Carbone P. P., Tjio J. H. Clinical implications of cytogenetic variants in chronic myelocytic leukemia (CML). Blood. 1968 Nov;32(5):755–766. [PubMed] [Google Scholar]
  44. Wiener F., Fenyö E. M., Klein G., Harris H. Fusion of tumour cells with host cells. Nat New Biol. 1972 Aug 2;238(83):155–159. doi: 10.1038/newbio238155a0. [DOI] [PubMed] [Google Scholar]
  45. Wilson M. G., Towner J. W., Fujimoto A. Retinoblastoma and D-chromosome deletions. Am J Hum Genet. 1973 Jan;25(1):57–61. [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES