Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Dec;70(12 Pt 1-2):3329–3333. doi: 10.1073/pnas.70.12.3329

Altered Growth Behavior of Malignant Cells Associated with Changes in Externally Labeled Glycoprotein and Glycolipid

Carl Gustav Gahmberg 1,2, Sen-Itiroh Hakomori 1,2
PMCID: PMC427230  PMID: 4357866

Abstract

By use of galactose oxidase (EC 1.1.3.9), followed by reduction with tritiated sodium borohydride, the surface structures of transformed 3T3 and NIL cells, under ordinary growth conditions, were characterized by (i) deletion of the normally existing glycoprotein label and (ii) appearance or increase of a new glycoprotein label. NIL cells had a galactoprotein label with molecular weight 200,000 that was deleted in NIL cells transformed by polyoma virus. 3T3 cells had a glycoprotein label with molecular weight of 30,000 that was lost after transformation. Glycoproteins of transformed 3T3 cells, with molecular weight 105,000, and those of transformed NIL cells, with molecular weight 85,000, were not labeled in normal confluent cells, but became labeled after trypsin treatment. The label in glycolipids was quantitatively different in normal and transformed cells. The labeling pattern in glycoprotein and glycolipids of transformed NIL and 3T3 cells became similar to that of nontransformed cells when contact responses of transformed cells became conspicuous when cells were cultured in the presence of dextran sulfate or dibutyryl cyclic adenosine monophosphate, or in medium in which glucose was replaced with galactose.

Keywords: polyoma virus, simian virus 40, galactose oxidase

Full text

PDF
3329

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AUB J. C., TIESLAU C., LANKESTER A. REACTIONS OF NORMAL AND TUMOR CELL SURFACES TO ENZYMES. I. WHEAT-GERM LIPASE AND ASSOCIATED MUCOPOLYSACCHARIDES. Proc Natl Acad Sci U S A. 1963 Oct;50:613–619. doi: 10.1073/pnas.50.4.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burger M. M. A difference in the architecture of the surface membrane of normal and virally transformed cells. Proc Natl Acad Sci U S A. 1969 Mar;62(3):994–1001. doi: 10.1073/pnas.62.3.994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cline M. J., Livingston D. C. Binding of 3 H-concanavalin A by normal and transformed cells. Nat New Biol. 1971 Aug 4;232(31):155–156. doi: 10.1038/newbio232155a0. [DOI] [PubMed] [Google Scholar]
  4. Critchley D. R., Macpherson I. Cell density dependent glycolipids in NILz hamster cells, derived malignant and transformed cell lines. Biochim Biophys Acta. 1973 Jan 19;296(1):145–159. doi: 10.1016/0005-2760(73)90054-4. [DOI] [PubMed] [Google Scholar]
  5. Den H., Schultz A. M., Basu M., Roseman S. Glycosyltransferase activities in normal and polyoma-transformed BHK cells. J Biol Chem. 1971 Apr 25;246(8):2721–2723. [PubMed] [Google Scholar]
  6. FOLCH J., ARSOVE S., MEATH J. A. Isolation of brain strandin, a new type of large molecule tissue component. J Biol Chem. 1951 Aug;191(2):819–831. [PubMed] [Google Scholar]
  7. Gahmberg C. G., Hakomori S. I. External labeling of cell surface galactose and galactosamine in glycolipid and glycoprotein of human erythrocytes. J Biol Chem. 1973 Jun 25;248(12):4311–4317. [PubMed] [Google Scholar]
  8. Goggins J. F., Johnson G. S., Pastan I. The effect of dibutyryl cyclic adenosine monophosphate on synthesis of sulfated acid mucopolysaccharides by transformed fibroblasts. J Biol Chem. 1972 Sep 25;247(18):5759–5764. [PubMed] [Google Scholar]
  9. Goto M., Kataoka Y., Sato H. Decrease of saturation density in cultured tumor cells by dextran sulfate. Gan. 1972 Jun;63(3):371–374. [PubMed] [Google Scholar]
  10. Grimes W. J. Sialic acid transferases and sialic acid levels in normal and transformed cells. Biochemistry. 1970 Dec 22;9(26):5083–5092. doi: 10.1021/bi00828a007. [DOI] [PubMed] [Google Scholar]
  11. Hakomori S. I., Murakami W. T. Glycolipids of hamster fibroblasts and derived malignant-transformed cell lines. Proc Natl Acad Sci U S A. 1968 Jan;59(1):254–261. doi: 10.1073/pnas.59.1.254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hakomori S. I., Siddiqui B., Li Y. T., Li S. C., Hellerqvist C. G. Anomeric structure of globoside and ceramide grihexoside of human erythrocytes and hamster fibroblasts. J Biol Chem. 1971 Apr 10;246(7):2271–2277. [PubMed] [Google Scholar]
  13. Hakomori S. I., Teather C., Andrews H. Organizational difference of cell surface "hematoside" in normal and virally transformed cells. Biochem Biophys Res Commun. 1968 Nov 25;33(4):563–568. doi: 10.1016/0006-291x(68)90332-x. [DOI] [PubMed] [Google Scholar]
  14. Hsie A. W., Jones C., Puck T. T. Further changes in differentiation state accompanying the conversion of Chinese hamster cells of fibroblastic form by dibutyryl adenosine cyclic 3':5'-monophosphate and hormones. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1648–1652. doi: 10.1073/pnas.68.7.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Inbar M., Sachs L. Interaction of the carbohydrate-binding protein concanavalin A with normal and transformed cells. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1418–1425. doi: 10.1073/pnas.63.4.1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kalckar H. M., Ullrey D., Kijomoto S., Hakomori S. Carbohydrate catabolism and the enhancement of uptake of galactose in hamster cells transformed by polyoma virus. Proc Natl Acad Sci U S A. 1973 Mar;70(3):839–843. doi: 10.1073/pnas.70.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Meezan E., Wu H. C., Black P. H., Robbins P. W. Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. II. Separation of glycoproteins and glycopeptides by sephadex chromatography. Biochemistry. 1969 Jun;8(6):2518–2524. doi: 10.1021/bi00834a039. [DOI] [PubMed] [Google Scholar]
  18. Morell A. G., Van den Hamer C. J., Scheinberg I. H., Ashwell G. Physical and chemical studies on ceruloplasmin. IV. Preparation of radioactive, sialic acid-free ceruloplasmin labeled with tritium on terminal D-galactose residues. J Biol Chem. 1966 Aug 25;241(16):3745–3749. [PubMed] [Google Scholar]
  19. Nicolson G. L. Neuraminidase "unmasking" and failure of trypsin to "unmask" -D-galactose-like sites on erythrocyte, lymphoma, and normal and virus-transformed fibroblast cell membranes. J Natl Cancer Inst. 1973 Jun;50(6):1443–1451. doi: 10.1093/jnci/50.6.1443. [DOI] [PubMed] [Google Scholar]
  20. Ozanne B., Sambrook J. Binding of radioactively labelled concanavalin A and wheat germ agglutinin to normal and virus-transformed cells. Nat New Biol. 1971 Aug 4;232(31):156–160. doi: 10.1038/newbio232156a0. [DOI] [PubMed] [Google Scholar]
  21. Rice R. H., Means G. E. Radioactive labeling of proteins in vitro. J Biol Chem. 1971 Feb 10;246(3):831–832. [PubMed] [Google Scholar]
  22. Saito T., Hakomori S. I. Quantitative isolation of total glycosphingolipids from animal cells. J Lipid Res. 1971 Mar;12(2):257–259. [PubMed] [Google Scholar]
  23. Sakiyama H., Gross S. K., Robbins P. W. Glycolipid synthesis in normal and virus-transformed hamster cell lines. Proc Natl Acad Sci U S A. 1972 Apr;69(4):872–876. doi: 10.1073/pnas.69.4.872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sakiyama H., Robbins P. W. The effect of dibutyryl adenosine 3':5'-cyclic monophosphate on the synthesis of glycolipids by normal and transformed Nil cells. Arch Biochem Biophys. 1973 Jan;154(1):407–414. doi: 10.1016/0003-9861(73)90073-8. [DOI] [PubMed] [Google Scholar]
  25. Sheppard J. R. Restoration of contact-inhibited growth to transformed cells by dibutyryl adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1316–1320. doi: 10.1073/pnas.68.6.1316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Thomas D. B., Winzler R. J. Structural studies on human erythrocyte glycoproteins. Alkali-labile oligosaccharides. J Biol Chem. 1969 Nov 10;244(21):5943–5946. [PubMed] [Google Scholar]
  27. Warren L., Critchley D., Macpherson I. Surface glycoproteins and glycolipids of chicken embryo cells transformed by a temperature-sensitive mutant of Rous sarcoma virus. Nature. 1972 Feb 4;235(5336):275–278. doi: 10.1038/235275a0. [DOI] [PubMed] [Google Scholar]
  28. Yogeeswaran G., Sheinin R., Wherrett J. R., Murray R. K. Studies on the glycosphingolipids of normal and virally transformed 3T3 mouse fibroblasts. J Biol Chem. 1972 Aug 25;247(16):5146–5148. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES