Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Dec;70(12 Pt 1-2):3450–3453. doi: 10.1073/pnas.70.12.3450

Inhibition of the Oxidation of Glutamate and Isocitrate in Liver Mitochondria at a Specific NADP+-Reducing Site

Diane C Lin 1,2, Ernest Kun 1,2
PMCID: PMC427257  PMID: 4148701

Abstract

The cation-complexing carboxylic-acid antibiotic X-537A, at concentrations far below that required for ionophorous activity, selectively inhibits the oxidation of glutamate and isocitrate by liver mitochondria in steady-state 3. The site of inhibition has been localized specifically at the reduction of NADP+. Glutamate and isocitrate dehydrogenases, the oxidation of NAD+-dependent substrates, pyridine nucleotide transhydrogenations, and the respiratory chain between NADH (or NADPH) and O2 are unaffected by the antibiotic X-537A. Kinetic evidence, i.e., competition between chlorotetracycline (a fluorescence probe for membrane-bound bivalent cation) and X-537A, indicates that the NADP+-reducing, antibiotic-sensitive site is most probably associated with the inner mitochondrial membrane.

Keywords: antibiotic X-537A, chlorotetracycline, membrane

Full text

PDF
3450

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caswell A. H., Hutchison J. D. Visualization of membrane bound cations by a fluorescent technique. Biochem Biophys Res Commun. 1971 Jan 8;42(1):43–49. doi: 10.1016/0006-291x(71)90359-7. [DOI] [PubMed] [Google Scholar]
  2. ESTABROOK R. W., MAITRA P. K. A fluorimetric method for the quantitative microanalysis of adenine and pyridine nucleotides. Anal Biochem. 1962 May;3:369–382. doi: 10.1016/0003-2697(62)90065-9. [DOI] [PubMed] [Google Scholar]
  3. KLINGENBERG M., PETTE D. Proportions of mitochondrial enzymes and pyridine nucleotides. Biochem Biophys Res Commun. 1962 Jun 4;7:430–432. doi: 10.1016/0006-291x(62)90329-7. [DOI] [PubMed] [Google Scholar]
  4. KLINGENBERG M., SLENCZKA W. [Pyridine nucleotide in liver mitochondria. An analysis of their redox relationships]. Biochem Z. 1959;331:486–517. [PubMed] [Google Scholar]
  5. KUN E., ACHMATOWICZ B. STUDIES WITH SPECIFIC ENZYME INHIBITORS. IX. SELECTIVE INHIBITORY EFFECTS OF SUBSTRATE ANALOGUES ON THE CATALYTIC ACTIVITY OF CRYSTALLINE GLUTAMATE DEHYDROGENASE. J Biol Chem. 1965 Jun;240:2619–2627. [PubMed] [Google Scholar]
  6. KUN E., AYLING J. E., BALTIMORE B. G. STUDIES ON SPECIFIC ENZYME INHIBITORS. 8. ENZYME-REGULATORY MECHANISM OF THE ENTRY OF GLUTAMIC ACID INTO METABOLIC PATHWAYS IN KIDNEY TISSUE. J Biol Chem. 1964 Sep;239:2896–2904. [PubMed] [Google Scholar]
  7. Lin D. C., Kun E. Mode of action of the antibiotic X-537A on mitochondrial glutamate oxidation. Biochem Biophys Res Commun. 1973 Feb 5;50(3):820–825. doi: 10.1016/0006-291x(73)91318-1. [DOI] [PubMed] [Google Scholar]
  8. Schnaitman C., Greenawalt J. W. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol. 1968 Jul;38(1):158–175. doi: 10.1083/jcb.38.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Tager J. M., Papa S., de Haan E. J., D'Aloya R., Quagliariello E. Control of nicotinamide nucleotide-linked oxidoreductions in rat-liver mitochondria. Biochim Biophys Acta. 1969 Jan 14;172(1):7–19. doi: 10.1016/0005-2728(69)90087-5. [DOI] [PubMed] [Google Scholar]
  10. Veech R. L., Raijman L., Krebs H. A. Equilibrium relations between the cytoplasmic adenine nucleotide system and nicotinamide-adenine nucleotide system in rat liver. Biochem J. 1970 Apr;117(3):499–503. doi: 10.1042/bj1170499. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES