Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Dec;70(12 Pt 1-2):3458–3462. doi: 10.1073/pnas.70.12.3458

Circular Dichroism of Chromaffin Granule Proteins In Situ: Analysis of Turbidity Effects and Protein Conformation

Kurt Rosenheck *, Allan S Schneider
PMCID: PMC427259  PMID: 4519638

Abstract

The circular dichroism spectra for proteins in situ in catecholamine secretory vesicles (chromaffin granules) is presented together with an analysis of protein conformation and turbidity effects on the spectra. The calculational analysis has resolved scattering and absorption effects in the turbid suspension spectra using a coated-sphere scattering model which allows for different materials in its shell and core. The intrinsic conformation of the proteins in situ was estimated by an iterative procedure with various trial protein conformations, for the chromaffin granules both intact and after release of their contents. The resulting average secondary structures (within about 10%) are: (25% α helix, 15% β structure) for the membrane proteins and (15% α helix, 5% β structure) for the soluble contents. The protein conformation did not change with osmotic release of the granule's contents. Consequently, if chromogranins are involved in a catecholamine storage complex, this is not reflected in any detectable change in their average secondary structure.

Keywords: catecholamine secretory vesicles, chromogranins, Mie scattering, coated sphere, membrane proteins

Full text

PDF
3458

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen Y. H., Yang J. T., Martinez H. M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry. 1972 Oct 24;11(22):4120–4131. doi: 10.1021/bi00772a015. [DOI] [PubMed] [Google Scholar]
  2. Glaser M., Singer S. J. Circular dichroism and the conformations of membrane proteins. Studies with red blood cell membranes. Biochemistry. 1971 May 11;10(10):1780–1787. doi: 10.1021/bi00786a008. [DOI] [PubMed] [Google Scholar]
  3. Gordon D. J., Holzwarth G. Optical activity of membrane suspensions: calculation of artifacts by Mie scattering theory. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2365–2369. doi: 10.1073/pnas.68.10.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gordon D. J. Mie scattering by optically active particles. Biochemistry. 1972 Feb 1;11(3):413–420. doi: 10.1021/bi00753a018. [DOI] [PubMed] [Google Scholar]
  5. Helle K. B., Flatmark T., Serck-Hanssen G., Lönning S. An improved method for the large-scale isolation of chromaffin granules from bovine adrenal medulla. Biochim Biophys Acta. 1971 Jan 12;226(1):1–8. doi: 10.1016/0005-2728(71)90172-1. [DOI] [PubMed] [Google Scholar]
  6. Ji T. H., Urry D. W. Correlation of light scattering and absorption flattening effects with distortions in the circular dichroism patterns of mitochondrial membrane fragments. Biochem Biophys Res Commun. 1969 Feb 21;34(4):404–411. doi: 10.1016/0006-291x(69)90396-9. [DOI] [PubMed] [Google Scholar]
  7. Litman B. J. Effect of light scattering on the circular dichroism of biological membranes. Biochemistry. 1972 Aug 15;11(17):3243–3247. doi: 10.1021/bi00767a018. [DOI] [PubMed] [Google Scholar]
  8. Schneider A. S., Schneider M. J., Rosenheck K. Optical activity of biological membranes: scattering effects and protein conformation. Proc Natl Acad Sci U S A. 1970 Jul;66(3):793–798. doi: 10.1073/pnas.66.3.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Smith A. D., Winkler H. A simple method for the isolation of adrenal chromaffin granules on a large scale. Biochem J. 1967 May;103(2):480–482. doi: 10.1042/bj1030480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Smith A. D., Winkler H. Purification and properties of an acidic protein from chromaffin granules of bovine adrenal medulla. Biochem J. 1967 May;103(2):483–492. doi: 10.1042/bj1030483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Smith U., Smith D. S., Winkler H., Ryan J. W. Exocytosis in the adrenal medulla demonstrated by freeze-etching. Science. 1973 Jan 5;179(4068):79–82. doi: 10.1126/science.179.4068.79. [DOI] [PubMed] [Google Scholar]
  12. Trifaró J. M., Dworkind J. A new and simple method for isolation of adrenal chromaffin granules by means of an isotonic density gradient. Anal Biochem. 1970 Apr;34(2):403–412. doi: 10.1016/0003-2697(70)90125-9. [DOI] [PubMed] [Google Scholar]
  13. VON EULER U. S., HAMBERG U. Colorimetric estimation of noradrenalin in the presence of adrenalin. Science. 1949 Nov 25;110(2865):561–561. doi: 10.1126/science.110.2865.561. [DOI] [PubMed] [Google Scholar]
  14. Wallach D. F., Kamat V. B., Gail M. H. Physicochemical differences between fragments of plasma membrane and endoplasmic reticulum. J Cell Biol. 1966 Sep;30(3):601–621. doi: 10.1083/jcb.30.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Winkler H., Hörtnagl H., Smith A. D. Membranes of the adrenal medulla. Behaviour of insoluble proteins of chromaffin granules on gel electrophoresis. Biochem J. 1970 Jun;118(2):303–310. doi: 10.1042/bj1180303. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES