Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Dec;70(12 Pt 1-2):3473–3477. doi: 10.1073/pnas.70.12.3473

Synaptic Rearrangement in the Dentate Gyrus: Histochemical Evidence of Adjustments after Lesions in Immature and Adult Rats

Carl W Cotman 1, Dee Ann Matthews 1, Dwan Taylor 1, Gary Lynch 1
PMCID: PMC427262  PMID: 4519639

Abstract

In immature animals, ablation of the entorhinal cortex elicited a rapid intensification of acetylcholinesterase (EC 3.1.1.7) staining in the outer one-quarter of the molecular layer of the dentate gyrus. Subsequent lesions of the septum eliminated this acetylcholinesterase intensification. Electron-microscopic histochemical analysis demonstrated a 30-fold increase in the number of acetylcholinesterase-positive synaptic endings in the intensification zone. The acetylcholinesterase augmentation thus appears attributable, in part at least, to an increase in the number of acetylcholinesterase-rich synaptic endings established by septo-hippocampal fibers. Observations in a comparative study of immature and adult rats point to the animal's developmental state as a major determinant of differences in these lesion-induced neuronal adjustments.

Keywords: synapse, acetylcholinesterase, septum

Full text

PDF
3473

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLACKSTAD T. W. Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination. J Comp Neurol. 1956 Oct;105(3):417–537. doi: 10.1002/cne.901050305. [DOI] [PubMed] [Google Scholar]
  2. Fonnum F. Topographical and subcellular localization of choline acetyltransferase in rat hippocampal region. J Neurochem. 1970 Jul;17(7):1029–1037. doi: 10.1111/j.1471-4159.1970.tb02256.x. [DOI] [PubMed] [Google Scholar]
  3. Goodman D. C., Horel J. A. Sprouting of optic tract projections in the brain stem of the rat. J Comp Neurol. 1966 May;127(1):71–88. doi: 10.1002/cne.901270105. [DOI] [PubMed] [Google Scholar]
  4. Gottlieb D. I., Cowan W. M. Evidence for a temporal factor in the occupation of available synaptic sites during the development of the dentate gyrus. Brain Res. 1972 Jun 22;41(2):452–456. doi: 10.1016/0006-8993(72)90514-8. [DOI] [PubMed] [Google Scholar]
  5. Guillery R. W. Binocular competition in the control of geniculate cell growth. J Comp Neurol. 1972 Jan;144(1):117–129. doi: 10.1002/cne.901440106. [DOI] [PubMed] [Google Scholar]
  6. Guillery R. W. Experiments to determine whether retinogeniculate axons can form translaminar collateral sprouts in the dorsal lateral geniculate nucleus of the cat. J Comp Neurol. 1972 Nov;146(3):407–420. doi: 10.1002/cne.901460306. [DOI] [PubMed] [Google Scholar]
  7. Hjorth-Simonsen A., Jeune B. Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J Comp Neurol. 1972 Feb;144(2):215–232. doi: 10.1002/cne.901440206. [DOI] [PubMed] [Google Scholar]
  8. LIU C. N., CHAMBERS W. W. Intraspinal sprouting of dorsal root axons; development of new collaterals and preterminals following partial denervation of the spinal cord in the cat. AMA Arch Neurol Psychiatry. 1958 Jan;79(1):46–61. [PubMed] [Google Scholar]
  9. Lewis P. R., Shute C. C., Silver A. Confirmation from choline acetylase analyses of a massive cholinergic innervation to the rat hippocampus. J Physiol. 1967 Jul;191(1):215–224. doi: 10.1113/jphysiol.1967.sp008246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lewis P. R., Shute C. C. The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest. Brain. 1967 Sep;90(3):521–540. doi: 10.1093/brain/90.3.521. [DOI] [PubMed] [Google Scholar]
  11. Lewis P. R., Shute C. C. The distribution of cholinesterase in cholinergic neurons demonstrated with the electron microscope. J Cell Sci. 1966 Sep;1(3):381–390. doi: 10.1242/jcs.1.3.381. [DOI] [PubMed] [Google Scholar]
  12. Lund R. D., Lund J. S. Synaptic adjustment after deafferentation of the superior colliculus of the rat. Science. 1971 Feb 26;171(3973):804–807. doi: 10.1126/science.171.3973.804. [DOI] [PubMed] [Google Scholar]
  13. Lynch G. S., Mosko S., Parks T., Cotman C. W. Relocation and hyperdevelopment of the dentate gyrus commissural system after entorhinal lesions in immature rats. Brain Res. 1973 Feb 14;50(1):174–178. doi: 10.1016/0006-8993(73)90604-5. [DOI] [PubMed] [Google Scholar]
  14. Lynch G., Matthews D. A., Mosko S., Parks T., Cotman C. Induced acetylcholinesterase-rich layer in rat dentate gyrus following entorhinal lesions. Brain Res. 1972 Jul 20;42(2):311–318. doi: 10.1016/0006-8993(72)90533-1. [DOI] [PubMed] [Google Scholar]
  15. Lynch G., Stanfield B., Cotman C. W. Developmental differences in post-lesion axonal growth in the hippocampus. Brain Res. 1973 Sep 14;59:155–168. doi: 10.1016/0006-8993(73)90257-6. [DOI] [PubMed] [Google Scholar]
  16. MATHISEN J. S., BLACKSTAD T. W. CHOLINESTERASE IN THE HIPPOCAMPAL REGION. DISTRIBUTION AND RELATION TO ARCHITECTONICS AND AFFERENT SYSTEMS. Acta Anat (Basel) 1964;56:216–253. [PubMed] [Google Scholar]
  17. Moore R. Y., Björklund A., Stenevi U. Plastic changes in the adrenergic innervation of the rat septal area in response to denervation. Brain Res. 1971 Oct 8;33(1):13–35. doi: 10.1016/0006-8993(71)90303-9. [DOI] [PubMed] [Google Scholar]
  18. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Raisman G. Neuronal plasticity in the septal nuclei of the adult rat. Brain Res. 1969 Jun;14(1):25–48. doi: 10.1016/0006-8993(69)90029-8. [DOI] [PubMed] [Google Scholar]
  20. Schneider G. E. Mechanisms of functional recovery following lesions of visual cortex or superior colliculus in neonate and adult hamsters. Brain Behav Evol. 1970;3(1):295–323. doi: 10.1159/000125479. [DOI] [PubMed] [Google Scholar]
  21. Shute C. C., Lewis P. R. Electron microscopy of cholinergic terminals and acetylcholinesterase-containing neurones in the hippocampal formation of the rat. Z Zellforsch Mikrosk Anat. 1966;69:334–343. doi: 10.1007/BF00406286. [DOI] [PubMed] [Google Scholar]
  22. Sotelo C., Palay S. L. Altered axons and axon terminals in the lateral vestibular nucleus of the rat. Possible example of axonal remodeling. Lab Invest. 1971 Dec;25(6):653–671. [PubMed] [Google Scholar]
  23. Steward O., Cotman C. W., Lynch G. S. Re-establishment of electrophysiologically functional entorhinal cortical input to the dentate gyrus deafferented by ipsilateral entorhinal lesions: innervation by the contralateral entorhinal cortex. Exp Brain Res. 1973 Nov 29;18(4):396–414. doi: 10.1007/BF00239108. [DOI] [PubMed] [Google Scholar]
  24. Storm-Mathisen J. Glutamate decarboxylase in the rat hippocampal region after lesions of the afferent fibre systems. Evidence that the enzyme is localized in intrinsic neurones. Brain Res. 1972 May 26;40(2):215–235. doi: 10.1016/0006-8993(72)90130-8. [DOI] [PubMed] [Google Scholar]
  25. Storm-Mathisen J. Quantitative histochemistry of acetylcholinesterase in rat hippocampal region correlated to histochemical staining. J Neurochem. 1970 Jun;17(6):739–750. doi: 10.1111/j.1471-4159.1970.tb03344.x. [DOI] [PubMed] [Google Scholar]
  26. Zimmer J. Ipsilateral afferents to the commissural zone of the fascia dentata, demonstrated in decommissurated rats by silver impregnation. J Comp Neurol. 1971 Aug;142(4):393–416. doi: 10.1002/cne.901420402. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES