Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Dec;70(12 Pt 1-2):3561–3565. doi: 10.1073/pnas.70.12.3561

The Interaction of Elongation Factor G with N-Acetylphenylalanyl Transfer RNA·Ribosme Complexes

Juan Modolell 1, Bartolomé Cabrer 1, David Vázquez 1
PMCID: PMC427280  PMID: 4519646

Abstract

N-Acetyl-Phe-tRNA, nonenzymically bound to the acceptor site of Escherichia coli ribosomes, readily undergoes translocation in the presence of elongation factor (EF)-G and GTP. The translocated N-acetyl-Phe-tRNA, bound to the ribosomal donor site, prevents further interaction of EF-G with the ribosome, for it inhibits the GTP hydrolysis that takes place in the presence of EF-G and ribosomes and it decreases the formation of either the GDP·EF-G·fusidic acid·ribosome complex or the 5′-guanylylmethylenediphosphonate·EF-G·ribosome complex. Deacylation with puromycin of the donor site-bound N-acetyl-Phe-tRNA reverses these inhibitions, even though the tRNAPhe moiety remains bound to the ribosme. These results suggest that ribosomes complexed with messenger RNA and peptidyl-tRNA may be restricted in their ability to interact with EF-G to that part of the elongation cycle when peptidyl-tRNA is in the acceptor site, and deacylated tRNA in the donor site. Deacylation of the donor site-bound peptidyl-tRNA associated with peptide bond formation may control the interaction of EF-G with the ribosome.

Keywords: translocation, GTPase, EF-Tu, ribosomal sites, fusidic acid

Full text

PDF
3561

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballesta J. P., Vazquez D. Elongation factor T-dependent hydrolysis of guanosine triphosphate resistant to thiostrepton. Proc Natl Acad Sci U S A. 1972 Oct;69(10):3058–3062. doi: 10.1073/pnas.69.10.3058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bodley J. W., Zieve F. J., Lin L. Studies on translocation. IV. The hydrolysis of a single round of guanosine triphosphate in the presence of fusidic acid. J Biol Chem. 1970 Nov 10;245(21):5662–5667. [PubMed] [Google Scholar]
  3. Bodley J. W., Zieve F. J., Lin L., Zieve S. T. Studies on translocation. 3. Conditions necessary for the formation and detection of a stable ribosome-G factor-guanosine diphosphate complex in the presence of fusidic acid. J Biol Chem. 1970 Nov 10;245(21):5656–5661. [PubMed] [Google Scholar]
  4. Brot N., Spears C., Weissbach H. The interaction of transfer factor G, ribosomes, and guanosine nucleotides in the presence of fusidic acid. Arch Biochem Biophys. 1971 Mar;143(1):286–296. doi: 10.1016/0003-9861(71)90211-6. [DOI] [PubMed] [Google Scholar]
  5. CONWAY T. W., LIPMANN F. CHARACTERIZATION OF A RIBOSOME-LINKED GUANOSINE TRIPHOSPHATASE IN ESCHERICHIA COLI EXTRACTS. Proc Natl Acad Sci U S A. 1964 Dec;52:1462–1469. doi: 10.1073/pnas.52.6.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cabrer B., Vázquez D., Modolell J. Inhibition by elongation factor EF G of aminoacyl-tRNA binding to ribosomes. Proc Natl Acad Sci U S A. 1972 Mar;69(3):733–736. doi: 10.1073/pnas.69.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Glynn I. M., Chappell J. B. A simple method for the preparation of 32-P-labelled adenosine triphosphate of high specific activity. Biochem J. 1964 Jan;90(1):147–149. doi: 10.1042/bj0900147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Haenni A. L., Chapeville F. The behaviour of acetylphenylalanyl soluble ribonucleic acid in polyphenylalanine synthesis. Biochim Biophys Acta. 1966 Jan 18;114(1):135–148. doi: 10.1016/0005-2787(66)90261-9. [DOI] [PubMed] [Google Scholar]
  9. Ishitsuka H., Kuriki Y., Kaji A. Release of transfer ribonucleic acid from ribosomes. A G factor and guanosine triphosphate-dependent reaction. J Biol Chem. 1970 Jul 10;245(13):3346–3351. [PubMed] [Google Scholar]
  10. Kaziro Y., Inoue N., Kuriki Y., Mizumoto K., Tanaka M., Kawakita M. Purification and properties of factor G. Cold Spring Harb Symp Quant Biol. 1969;34:385–393. doi: 10.1101/sqb.1969.034.01.045. [DOI] [PubMed] [Google Scholar]
  11. Lucas-Lenard J., Haenni A. L. Release of transfer RNA during peptide chain elongation. Proc Natl Acad Sci U S A. 1969 May;63(1):93–97. doi: 10.1073/pnas.63.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lucas-Lenard J. Protein biosynthesis. Annu Rev Biochem. 1971;40:409–448. doi: 10.1146/annurev.bi.40.070171.002205. [DOI] [PubMed] [Google Scholar]
  13. Miller D. L. Elongation factors EF Tu and EF G interact at related sites on ribosomes. Proc Natl Acad Sci U S A. 1972 Mar;69(3):752–755. doi: 10.1073/pnas.69.3.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Modolell J., Vazquez D. Inhibition by aminoacyl transfer ribonucleic acid of elongation factor G-dependent binding of guanosine nucleotide to ribosomes. J Biol Chem. 1973 Jan 25;248(2):488–493. [PubMed] [Google Scholar]
  15. Modolell J., Vazquez D., Monro R. E. Ribosomes, G-factor and siomycin. Nat New Biol. 1971 Mar 24;230(12):109–112. doi: 10.1038/newbio230109a0. [DOI] [PubMed] [Google Scholar]
  16. NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
  17. Nishizuka Y., Lipmann F. The interrelationship between guanosine triphosphatase and amino acid polymerization. Arch Biochem Biophys. 1966 Sep 26;116(1):344–351. doi: 10.1016/0003-9861(66)90040-3. [DOI] [PubMed] [Google Scholar]
  18. Nombela C., Ochoa S. Conformational control of the interaction of eukaryotic elongation factors EF-1 and EF-2 with ribosomes. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3556–3560. doi: 10.1073/pnas.70.12.3556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Parmeggiani A., Gottschalk E. M. Isolation and some properties of the amino acid polymerization factors from Escherichia coli. Cold Spring Harb Symp Quant Biol. 1969;34:377–384. doi: 10.1101/sqb.1969.034.01.044. [DOI] [PubMed] [Google Scholar]
  20. Richman N., Bodley J. W. Ribosomes cannot interact simultaneously with elongation factors EF Tu and EF G. Proc Natl Acad Sci U S A. 1972 Mar;69(3):686–689. doi: 10.1073/pnas.69.3.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Richter D. Inability of E. coli ribosomes to interact simultaneously with the bacterial elongation factors EF Tu and EF G. Biochem Biophys Res Commun. 1972 Mar 10;46(5):1850–1856. doi: 10.1016/0006-291x(72)90061-7. [DOI] [PubMed] [Google Scholar]
  22. Watanabe S. Interaction of siomycin with the acceptor site of Escherichia coli ribosomes. J Mol Biol. 1972 Jun 28;67(3):443–457. doi: 10.1016/0022-2836(72)90462-7. [DOI] [PubMed] [Google Scholar]
  23. Weissbach H., Brot N., Miller D., Rosman M., Ertel R. Interaction of guanosine triphosphate with E. coli soluble transfer factors. Cold Spring Harb Symp Quant Biol. 1969;34:419–431. doi: 10.1101/sqb.1969.034.01.048. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES