Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Dec;70(12 Pt 1-2):3571–3575. doi: 10.1073/pnas.70.12.3571

Electron Transport-Linked Compared with Proton-Induced ATP Generation in Thiobacillus novellus

J S Cole III 1,*, M I H Aleem 1,
PMCID: PMC427282  PMID: 4357881

Abstract

The apparently soluble electron-transport system, that does not sediment when centrifuged at 144,000 × g or 300,000 × g for 3 hr, catalyzes oxidative phosphorylation with an efficiency comparable to that of an intact mitochondrial system. While the proton-induced phosphorylation occurs in whole cells, crude cell-free extracts, and supernatants from low-speed centrifugation, it does not occur in either the 144,000 or 300,000 × g supernatant fractions. The data show that oxidative energy can be conserved as ATP under conditions that are incompatible with the basic postulate of the chemiosmotic hypothesis.

Keywords: proton gradient, oxidative phosphorylation, soluble system

Full text

PDF
3571

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aleem M. I. Generation of reducing power in chemosynthesis. 3. Energy-linked reduction of pyridine nucleotides in Thiobacillus novellus. J Bacteriol. 1966 Feb;91(2):729–736. doi: 10.1128/jb.91.2.729-736.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aleem M. I. Generation of reducing power in chemosynthesis. IV. Energy-linked reduction of pyridine nucleotides by succinate in Thiobacillus novellus. Biochim Biophys Acta. 1966 Oct 17;128(1):1–12. doi: 10.1016/0926-6593(66)90136-6. [DOI] [PubMed] [Google Scholar]
  3. Aleem M. I. Mechanism of oxidative phosphorylation in the chemoautotroph Nitrobacter agilis. Biochim Biophys Acta. 1968 Oct 1;162(3):338–347. doi: 10.1016/0005-2728(68)90120-5. [DOI] [PubMed] [Google Scholar]
  4. Aleem M. I., Nason A. PHOSPHORYLATION COUPLED TO NITRITE OXIDATION BY PARTICLES FROM THE CHEMOAUTOTROPH, NITROBACTER AGILIS. Proc Natl Acad Sci U S A. 1960 Jun;46(6):763–769. doi: 10.1073/pnas.46.6.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cole J. S., 3rd, Aleem M. I. Oxidative phosphorylation in Thiobacillus novellus. Biochem Biophys Res Commun. 1970 Feb 20;38(4):736–743. doi: 10.1016/0006-291x(70)90643-1. [DOI] [PubMed] [Google Scholar]
  6. Gibson J., Morita S. Changes in adenine nucleotides of intact Chromatium D produced by illumination. J Bacteriol. 1967 May;93(5):1544–1550. doi: 10.1128/jb.93.5.1544-1550.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jagendorf A. T., Uribe E. ATP formation caused by acid-base transition of spinach chloroplasts. Proc Natl Acad Sci U S A. 1966 Jan;55(1):170–177. doi: 10.1073/pnas.55.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Knobloch K., Eley J. H., Aleem M. I. Thiosulfate-linked ATP-dependent NAD + reduction in Rhodopseudomonas palustris. Arch Mikrobiol. 1971;80(2):97–114. doi: 10.1007/BF00411876. [DOI] [PubMed] [Google Scholar]
  9. Komai H., Hunter D. R., Takahashi Y. Effect of lysolecithin treatment on the structure and functions of the mitochondrial inner membrane. Biochem Biophys Res Commun. 1973 Jul 2;53(1):82–89. doi: 10.1016/0006-291x(73)91404-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES