Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Dec;70(12 Pt 1-2):3703–3706. doi: 10.1073/pnas.70.12.3703

Triplet-Triplet Energy Transfer in α-Trypsin

C A Ghiron *,, J W Longworth *, N Ramachandran
PMCID: PMC427310  PMID: 4521197

Abstract

Experiments are reported that demonstrate that light absorbed by ionized tyrosinyl sensitizes the phosphorescence of tryptophanyl residues of native α-trypsin. The sensitization effect is abolished when α-trypsin is unfolded in guanidine hydrochloride. Under the experimental conditions used, the tryptophan phosphorescence could only have been induced by an electron-exchange interaction. These results, therefore, require that there be at least one ionized tyrosinyl-tryptophanyl pair in the native enzyme and that the distance between the two side chains be sufficiently short to permit electron exchange.

Keywords: protein structure, tryptophan phosphorescence, electron-exchange interaction

Full text

PDF
3703

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chase T., Jr, Shaw E. p-Nitrophenyl-p'-guanidinobenzoate HCl: a new active site titrant for trypsin. Biochem Biophys Res Commun. 1967 Nov 30;29(4):508–514. doi: 10.1016/0006-291x(67)90513-x. [DOI] [PubMed] [Google Scholar]
  2. Galley W. C., Stryer L. Triplet-triplet energy transfer in proteins as a criterion of proximity. Proc Natl Acad Sci U S A. 1968 May;60(1):108–114. doi: 10.1073/pnas.60.1.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Longworth J. W. Techniques for measuring fluorescence and phosphorescence of biological materials. Photochem Photobiol. 1968 Dec;8(6):589–599. doi: 10.1111/j.1751-1097.1968.tb05901.x. [DOI] [PubMed] [Google Scholar]
  4. Luk C. K. Quenching of the emission of tryptophan, tyrosine, and serum albumins by cupric ion. Biopolymers. 1971;10(7):1229–1242. doi: 10.1002/bip.360100712. [DOI] [PubMed] [Google Scholar]
  5. MARES-GUIA M., SHAW E. STUDIES ON THE ACTIVE CENTER OF TRYPSIN. THE BINDING OF AMIDINES AND GUANIDINES AS MODELS OF THE SUBSTRATE SIDE CHAIN. J Biol Chem. 1965 Apr;240:1579–1585. [PubMed] [Google Scholar]
  6. Marama M., Fujita T., Oata M. Purification and properties of a microsomal endopeptidase from rat kidney preferentially hydrolyzing parhyroid hormone. Arch Biochem Biophys. 1970 May;138(1):245–253. doi: 10.1016/0003-9861(70)90305-x. [DOI] [PubMed] [Google Scholar]
  7. SCHWERT G. W., TAKENAKA Y. A spectrophotometric determination of trypsin and chymotrypsin. Biochim Biophys Acta. 1955 Apr;16(4):570–575. doi: 10.1016/0006-3002(55)90280-8. [DOI] [PubMed] [Google Scholar]
  8. Santus R., Bazin M., Aubailly M., Guermonprez R. Influence of energy transfer on the photoionization of tryptophan and tyrosine in basic media. Photochem Photobiol. 1972 Jan;15(1):61–69. doi: 10.1111/j.1751-1097.1972.tb06223.x. [DOI] [PubMed] [Google Scholar]
  9. Schroeder D. D., Shaw E. Chromatography of trypsin and its derivatives. Characterization of a new active form of bovine trypsin. J Biol Chem. 1968 Jun 10;243(11):2943–2949. [PubMed] [Google Scholar]
  10. Stroud R. M., Kay L. M., Dickerson R. E. The crystal and molecular structure of DIP-inhibited bovine trypsin at2.7Angstrom resolution. Cold Spring Harb Symp Quant Biol. 1972;36:125–140. doi: 10.1101/sqb.1972.036.01.018. [DOI] [PubMed] [Google Scholar]
  11. Villanueva G. B., Herskovits T. T. Exposure of the tyrosyl and tryptophyl residues in trypsin and trypsinogen. Biochemistry. 1971 Aug 31;10(18):3358–3365. doi: 10.1021/bi00794a007. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES