Abstract
Experiments are reported that demonstrate that light absorbed by ionized tyrosinyl sensitizes the phosphorescence of tryptophanyl residues of native α-trypsin. The sensitization effect is abolished when α-trypsin is unfolded in guanidine hydrochloride. Under the experimental conditions used, the tryptophan phosphorescence could only have been induced by an electron-exchange interaction. These results, therefore, require that there be at least one ionized tyrosinyl-tryptophanyl pair in the native enzyme and that the distance between the two side chains be sufficiently short to permit electron exchange.
Keywords: protein structure, tryptophan phosphorescence, electron-exchange interaction
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chase T., Jr, Shaw E. p-Nitrophenyl-p'-guanidinobenzoate HCl: a new active site titrant for trypsin. Biochem Biophys Res Commun. 1967 Nov 30;29(4):508–514. doi: 10.1016/0006-291x(67)90513-x. [DOI] [PubMed] [Google Scholar]
- Galley W. C., Stryer L. Triplet-triplet energy transfer in proteins as a criterion of proximity. Proc Natl Acad Sci U S A. 1968 May;60(1):108–114. doi: 10.1073/pnas.60.1.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Longworth J. W. Techniques for measuring fluorescence and phosphorescence of biological materials. Photochem Photobiol. 1968 Dec;8(6):589–599. doi: 10.1111/j.1751-1097.1968.tb05901.x. [DOI] [PubMed] [Google Scholar]
- Luk C. K. Quenching of the emission of tryptophan, tyrosine, and serum albumins by cupric ion. Biopolymers. 1971;10(7):1229–1242. doi: 10.1002/bip.360100712. [DOI] [PubMed] [Google Scholar]
- MARES-GUIA M., SHAW E. STUDIES ON THE ACTIVE CENTER OF TRYPSIN. THE BINDING OF AMIDINES AND GUANIDINES AS MODELS OF THE SUBSTRATE SIDE CHAIN. J Biol Chem. 1965 Apr;240:1579–1585. [PubMed] [Google Scholar]
- Marama M., Fujita T., Oata M. Purification and properties of a microsomal endopeptidase from rat kidney preferentially hydrolyzing parhyroid hormone. Arch Biochem Biophys. 1970 May;138(1):245–253. doi: 10.1016/0003-9861(70)90305-x. [DOI] [PubMed] [Google Scholar]
- SCHWERT G. W., TAKENAKA Y. A spectrophotometric determination of trypsin and chymotrypsin. Biochim Biophys Acta. 1955 Apr;16(4):570–575. doi: 10.1016/0006-3002(55)90280-8. [DOI] [PubMed] [Google Scholar]
- Santus R., Bazin M., Aubailly M., Guermonprez R. Influence of energy transfer on the photoionization of tryptophan and tyrosine in basic media. Photochem Photobiol. 1972 Jan;15(1):61–69. doi: 10.1111/j.1751-1097.1972.tb06223.x. [DOI] [PubMed] [Google Scholar]
- Schroeder D. D., Shaw E. Chromatography of trypsin and its derivatives. Characterization of a new active form of bovine trypsin. J Biol Chem. 1968 Jun 10;243(11):2943–2949. [PubMed] [Google Scholar]
- Stroud R. M., Kay L. M., Dickerson R. E. The crystal and molecular structure of DIP-inhibited bovine trypsin at2.7Angstrom resolution. Cold Spring Harb Symp Quant Biol. 1972;36:125–140. doi: 10.1101/sqb.1972.036.01.018. [DOI] [PubMed] [Google Scholar]
- Villanueva G. B., Herskovits T. T. Exposure of the tyrosyl and tryptophyl residues in trypsin and trypsinogen. Biochemistry. 1971 Aug 31;10(18):3358–3365. doi: 10.1021/bi00794a007. [DOI] [PubMed] [Google Scholar]
