Abstract
In chick-embryo fibroblasts infected by T5, a temperature-sensitive mutant of Schmidt-Ruppin Rous sarcoma virus, the level of catenated dimeric and oligomeric mitochondrial DNA is temperature-dependent and correlates with the phenotypic manifestation of transformation. At the permissive temperature (36°), where transformation is expressed, the 2- to 3-fold elevated level characteristic of cells transformed by the wild-type Rous sarcoma virus was observed, but at the nonpermissive temperature (41°), at which cells appear normal and behave normally, the oligomer level was characteristic of uninfected cells. Temperature shifts from 41 to 36° and vice versa resulted in phenotypic reversion and reversals of the respective levels of multiple-length DNA. Cellular growth rates were not altered. Treatment of control cells with cycloheximide resulted in a 5-fold increase of oligomeric DNA, whereas exposure to 9-β-D-arabinofuranosyladenine had little effect. With both inhibitors, nuclear but not mitochondrial DNA synthesis was inhibited. The possible relation of formation of oligomeric mitochondrial DNA to alterations in the mitochondrial membranes of transformed cells and to inhibition of protein synthesis in the cytoplasm is discussed.
Keywords: catenated circular DNA, malignant cells, chick, cycloheximide, 9-β-D-arabinofuranosyladenine, 2-deoxyglucose uptake
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borst P. Mitochondrial nucleic acids. Annu Rev Biochem. 1972;41:333–376. doi: 10.1146/annurev.bi.41.070172.002001. [DOI] [PubMed] [Google Scholar]
- Brown I. H., Vinograd J. Sedimentation velocity properties of catenated DNA molecules from HeLa cell mitochondria. Biopolymers. 1971 Oct;10(10):2015–2028. doi: 10.1002/bip.360101017. [DOI] [PubMed] [Google Scholar]
- Burger M. M. Surface changes in transformed cells detected by lectins. Fed Proc. 1973 Jan;32(1):91–101. [PubMed] [Google Scholar]
- Clayton D. A., Vinograd J. Complex mitochondrial DNA in leukemic and normal human myeloid cells. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1077–1084. doi: 10.1073/pnas.62.4.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuzin F., Vogt M., Dieckmann M., Berg P. Induction of virus multiplication in 3T3 cells transformed by a thermosensitive mutant of polyoma virus. II. Formation of oligometric polyoma DNA molecules. J Mol Biol. 1970 Feb 14;47(3):317–333. doi: 10.1016/0022-2836(70)90305-0. [DOI] [PubMed] [Google Scholar]
- Dressler D. The rolling circle for phiX DNA replication. II. Synthesis of single-stranded circles. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1934–1942. doi: 10.1073/pnas.67.4.1934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goebel W., Helinski D. R. Generation of higher multiple circular DNA forms in bacteria. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1406–1413. doi: 10.1073/pnas.61.4.1406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goebel W. Studies on extrachromosomal DNA elements. Replication of the colicinogenic factor Col E1 in two temperature sensitive mutants of Escherichia coli defective in DNA replication. Eur J Biochem. 1970 Aug;15(2):311–320. doi: 10.1111/j.1432-1033.1970.tb01009.x. [DOI] [PubMed] [Google Scholar]
- Gurney T., Jr Local stimulation of growth in primary cultures of chick embryo fibroblasts. Proc Natl Acad Sci U S A. 1969 Mar;62(3):906–911. doi: 10.1073/pnas.62.3.906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaenisch R., Levine A. J. DNA replication of SV40-infected cells. VII. Formation of SV40 catenated and circular dimers. J Mol Biol. 1973 Jan 10;73(2):199–212. doi: 10.1016/0022-2836(73)90323-9. [DOI] [PubMed] [Google Scholar]
- Kiger J. A., Jr, Sinsheimer R. L. Vegetative lambda DNA. IV. Fractionation of replicating lambda DNA on benzoylated-naphthoylated DEAE cellulose. J Mol Biol. 1969 Mar 28;40(3):467–490. doi: 10.1016/0022-2836(69)90166-1. [DOI] [PubMed] [Google Scholar]
- Martin G. S. Rous sarcoma virus: a function required for the maintenance of the transformed state. Nature. 1970 Sep 5;227(5262):1021–1023. doi: 10.1038/2271021a0. [DOI] [PubMed] [Google Scholar]
- Martin G. S., Venuta S., Weber M., Rubin H. Temperature-dependent alterations in sugar transport in cells infected by a temperature-sensitive mutant of Rous sarcoma virus. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2739–2741. doi: 10.1073/pnas.68.11.2739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nass M. M. Abnormal DNA patterns in animal mitochondria: ethidium bromide-induced breakdown of closed circular DNA and conditions leading to oligomer accumulation. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1926–1933. doi: 10.1073/pnas.67.4.1926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nass M. M., Ben-Shaul Y. A novel closed circular duplex DNA in bleached mutant and green strains of Euglena gracilis. Biochim Biophys Acta. 1972 Jun 22;272(1):130–136. doi: 10.1016/0005-2787(72)90041-x. [DOI] [PubMed] [Google Scholar]
- Nass M. M. Differential effects of ethidium bromide on mitochondrial and nuclear DNA synthesis in vivo in cultured mammalian cells. Exp Cell Res. 1972 May;72(1):211–222. doi: 10.1016/0014-4827(72)90583-6. [DOI] [PubMed] [Google Scholar]
- Nass M. M. Mitochondrial DNA: Advances, Problems, and Goals. Science. 1969 Jul 4;165(3888):25–35. doi: 10.1126/science.165.3888.25. [DOI] [PubMed] [Google Scholar]
- Nass M. M. Reversible generation of circular dimer and higher multiple forms of mitochondrial DNA. Nature. 1969 Sep 13;223(5211):1124–1129. doi: 10.1038/2231124a0. [DOI] [PubMed] [Google Scholar]
- Paoletti C., Riou G. Le DNA mitochondrial des cellules malignes. Bull Cancer. 1970 Jul-Sep;57(3):301–334. [PubMed] [Google Scholar]
- Paoletti C., Riou G., Pairault J. Circular oligomers in mitochondrial DNA of human and beef nonmalignant thyroid glands. Proc Natl Acad Sci U S A. 1972 Apr;69(4):847–850. doi: 10.1073/pnas.69.4.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin H. A VIRUS IN CHICK EMBRYOS WHICH INDUCES RESISTANCE IN VITRO TO INFECTION WITH ROUS SARCOMA VIRUS. Proc Natl Acad Sci U S A. 1960 Aug;46(8):1105–1119. doi: 10.1073/pnas.46.8.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shipman C., Jr, Smith S. H., Drach J. C. Selective inhibition of nuclear DNA synthesis by 9- -D-arabinofuranosyl adenine in rat cells transformed by Rous sarcoma virus. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1753–1757. doi: 10.1073/pnas.69.7.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Tuyle G. C., Kali G. F. Isolation of a membrane-DNA-RNA complex from rat liver mitochondria. Arch Biochem Biophys. 1972 Apr;149(2):425–434. doi: 10.1016/0003-9861(72)90341-4. [DOI] [PubMed] [Google Scholar]
- Warren L., Critchley D., Macpherson I. Surface glycoproteins and glycolipids of chicken embryo cells transformed by a temperature-sensitive mutant of Rous sarcoma virus. Nature. 1972 Feb 4;235(5336):275–278. doi: 10.1038/235275a0. [DOI] [PubMed] [Google Scholar]


