Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Dec;70(12 Pt 1-2):3773–3775. doi: 10.1073/pnas.70.12.3773

DNA Methylase Induced by Bacteriophage ϕX174

Aharon Razin 1
PMCID: PMC427325  PMID: 4590171

Abstract

A cytosine-specific DNA methylase activity, which is normally absent in the Escherichia coli B strain, was found to be induced in these cells by infection with bacteriophage ϕX174. In vivo experiments revealed a single 5-methylcytosine residue in the phage DNA molecule and 5-methylcytosine residues in the infected host DNA, in addition to the 6-methylaminopurine residues present in the uninfected cells. In vitro, a partially purified enzyme from infected cells methylated DNA from uninfected cells, but showed no activity with cellular DNA from infected cells. The partially purified methylase derived from uninfected cells lacks this activity.

Keywords: E. coli B infected by ϕX174, cytosine methylase, 5-methylcytosine, DNA methylation

Full text

PDF
3773

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arber W., Linn S. DNA modification and restriction. Annu Rev Biochem. 1969;38:467–500. doi: 10.1146/annurev.bi.38.070169.002343. [DOI] [PubMed] [Google Scholar]
  2. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  3. DOSKOCIL J., SORMO'VA Z. THE OCCURRENCE OF 5-METHYLCYTOSINE IN BACTERIAL DEOXYRIBONUCLEIC ACIDS. Biochim Biophys Acta. 1965 Mar 15;95:513–515. [PubMed] [Google Scholar]
  4. Doskocil J., Sormová Z. The sequences of 5-methylcytosine in the DNA of Escherichia coli. Biochem Biophys Res Commun. 1965 Jul 26;20(3):334–339. doi: 10.1016/0006-291x(65)90369-4. [DOI] [PubMed] [Google Scholar]
  5. Fujimoto D., Srinivasan P. R., Borek E. On the nature of the deoxyribonucleic acid methylases. Biological evidence for the multiple nature of the enzymes. Biochemistry. 1965 Dec;4(12):2849–2855. doi: 10.1021/bi00888a041. [DOI] [PubMed] [Google Scholar]
  6. Hattman S., Gold E., Plotnik A. Methylation of cytosine residues in DNA controlled by a drug resistance factor (host-induced modification-R factors-N 6 -methyladenine-5-methylcytosine). Proc Natl Acad Sci U S A. 1972 Jan;69(1):187–190. doi: 10.1073/pnas.69.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hattman S. Plasmid-controlled variation in the content of methylated bases in bacteriophage lambda deoxyribonucleic acid. J Virol. 1972 Sep;10(3):356–361. doi: 10.1128/jvi.10.3.356-361.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hubacek J., Glover S. W. Complementation analysis of temperature-sensitive host specificity mutations in Escherichia coli. J Mol Biol. 1970 May 28;50(1):111–127. doi: 10.1016/0022-2836(70)90108-7. [DOI] [PubMed] [Google Scholar]
  9. Kaye A. M., Fridlender B., Salomon R., Bar-Meir S. Methylation of DNA in vitro: enzymic activity from different bacterial strains on DNA from various sources. Biochim Biophys Acta. 1967 Jul 18;142(2):331–344. doi: 10.1016/0005-2787(67)90616-8. [DOI] [PubMed] [Google Scholar]
  10. Knippers R., Salivar W. O., Newbold J. E., Sinsheimer R. L. The process of infection with bacteriophage phiX174. XXVI. Transfer of the parental DNA of bacteriophage phiX174 into progeny bacteriophage particles. J Mol Biol. 1969 Feb 14;39(3):641–654. doi: 10.1016/0022-2836(69)90150-8. [DOI] [PubMed] [Google Scholar]
  11. Lautenberger J. A., Linn S. The deoxyribonucleic acid modification and restriction enzymes of Escherichia coli B. I. Purification, subunit structure, and catalytic properties of the modification methylase. J Biol Chem. 1972 Oct 10;247(19):6176–6182. [PubMed] [Google Scholar]
  12. Mamelak L., Boyer H. W. Genetic control of the secondary modification of deoxyribonucleic acid in Escherichia coli. J Bacteriol. 1970 Oct;104(1):57–62. doi: 10.1128/jb.104.1.57-62.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Razin A., Sedat J. W., Sinsheimer R. L. In vivo methylation of replicating bacteriophage phi chi174 DNA. J Mol Biol. 1973 Aug 15;78(3):417–425. doi: 10.1016/0022-2836(73)90465-8. [DOI] [PubMed] [Google Scholar]
  14. Razin A., Sedat J. W., Sinsheimer R. L. Structure of the DNA of bacteriophage phiX174. VII. Methylation. J Mol Biol. 1970 Oct 28;53(2):251–259. doi: 10.1016/0022-2836(70)90298-6. [DOI] [PubMed] [Google Scholar]
  15. Wood W. B. Host specificity of DNA produced by Escherichia coli: bacterial mutations affecting the restriction and modification of DNA. J Mol Biol. 1966 Mar;16(1):118–133. doi: 10.1016/s0022-2836(66)80267-x. [DOI] [PubMed] [Google Scholar]
  16. Yudelevich A., Gold M. A specific DNA methylase induced by bacteriophage 15. J Mol Biol. 1969 Feb 28;40(1):77–91. doi: 10.1016/0022-2836(69)90297-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES