Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Dec;70(12 Pt 1-2):3843–3846. doi: 10.1073/pnas.70.12.3843

Effect of the Removal of the Y Base on the Conformation of Yeast tRNAPhe

David R Kearns 1, K Lim Wong 1,*, Yeng P Wong 1
PMCID: PMC427341  PMID: 4590172

Abstract

The effect of removing the Y base from the anticodon loop of yeast tRNAPhe has been examined by high-resolution proton nuclear magnetic resonance spectroscopy and optical melting. Analysis of the changes in the nuclear magnetic resonance spectra indicate that the removal of the Y base produces a small conformational change in the anticodon stem in which all the interbase separations are increased by approximately 0.2 Å. The temperature dependence of the nuclear magnetic resonance spectra and the optical melting measurements indicate that the high temperature stability of tRNAPhe is decreased by removal of the Y base. With the exception of the anticodon stem, the secondary structure of the other helical stems of the molecule appear to be unaltered when the Y base is excised.

Keywords: base pairing, 300-MHz proton NMR, conformation

Full text

PDF
3843

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cameron V., Uhlenbeck O. C. Removal of Y-37 from tRNA phe yeast alters oligomer binding to two loops. Biochem Biophys Res Commun. 1973 Feb 5;50(3):635–640. doi: 10.1016/0006-291x(73)91291-6. [DOI] [PubMed] [Google Scholar]
  2. Kearns D. R., Patel D. J., Shulman R. G. High resolution nuclear magnetic resonance studies of hydrogen bonded protons of tRNA in water. Nature. 1971 Jan 29;229(5283):338–339. doi: 10.1038/229338a0. [DOI] [PubMed] [Google Scholar]
  3. Kearns D. R., Patel D., Shulman R. G., Yamane T. High resolution nuclear magnetic resonance study of base pairing in four purified transfer RNA molecules. J Mol Biol. 1971 Oct 14;61(1):265–270. doi: 10.1016/0022-2836(71)90224-5. [DOI] [PubMed] [Google Scholar]
  4. Kim S. H., Quigley G. J., Suddath F. L., McPherson A., Sneden D., Kim J. J., Weinzierl J., Rich A. Three-dimensional structure of yeast phenylalanine transfer RNA: folding of the polynucleotide chain. Science. 1973 Jan 19;179(4070):285–288. doi: 10.1126/science.179.4070.285. [DOI] [PubMed] [Google Scholar]
  5. Lightfoot D. R., Wong K. L., Kearns D. R., Reid B. R., Shulman R. G. Assignment of the low field proton nuclear magnetic resonance spectrum of yeast phenylalanine transfer RNA to specific base pairs. J Mol Biol. 1973 Jun 25;78(1):71–89. doi: 10.1016/0022-2836(73)90429-4. [DOI] [PubMed] [Google Scholar]
  6. Pongs O. Complementary oligonucleotide binding to yeast tRNA Phe (HCl). FEBS Lett. 1972 Dec 15;28(3):284–286. doi: 10.1016/0014-5793(72)80731-2. [DOI] [PubMed] [Google Scholar]
  7. Shulman R. G., Hilbers C. W. Ring-current shifts in the 300 MHz nuclear magnetic resonance spectra of six purified transfer RNA molecules. J Mol Biol. 1973 Jun 25;78(1):57–69. doi: 10.1016/0022-2836(73)90428-2. [DOI] [PubMed] [Google Scholar]
  8. Shulman R. G., Hilbers C. W., Wong Y. P., Wong K. L., Lightfoot D. R., Reid B. R., Kearns D. R. Determination of secondary and tertiary structural features of transfer RNA molecules in solution by nuclear magnetic resonance. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2042–2045. doi: 10.1073/pnas.70.7.2042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Thiebe R., Zachau H. G. A specific modification next to the anticodon of phenylalanine transfer ribonucleic acid. Eur J Biochem. 1968 Sep 24;5(4):546–555. doi: 10.1111/j.1432-1033.1968.tb00404.x. [DOI] [PubMed] [Google Scholar]
  10. Thiebe R., Zachau H. G. Further studies on amino acid acceptance and physical properties of tRNA-phe-yeast. Biochim Biophys Acta. 1970 Oct 15;217(2):294–304. [PubMed] [Google Scholar]
  11. Thiebe R., Zachau H. G. The role of the anticodon region in homologous and heterologous charging of tRNA-Phe. Biochem Biophys Res Commun. 1968 Oct 24;33(2):260–265. doi: 10.1016/0006-291x(68)90778-x. [DOI] [PubMed] [Google Scholar]
  12. Wimmer E., Maxwell I. H., Tener G. M. A simple method for isolating highly purified yeast phenylalanine transfer ribonucleic acid. Biochemistry. 1968 Jul;7(7):2623–2628. doi: 10.1021/bi00847a026. [DOI] [PubMed] [Google Scholar]
  13. Wong Y. P., Kearns D. R., Reid B. R., Shulman R. G. Investigation of exchangeable protons and the extent of base pairings in yeast phenylalanine transfer RNA by high resolution nuclear magnetic resonance. J Mol Biol. 1972 Dec 30;72(3):725–740. doi: 10.1016/0022-2836(72)90187-8. [DOI] [PubMed] [Google Scholar]
  14. Wong Y. P., Kearns D. R., Shulman R. G., Yamane T., Chang S., Chirikjian J. G., Fresco J. R. High resolution nuclear magnetic resonance study of base pairing in the native and denaturated conformers of transfer RNA Leu 3 . J Mol Biol. 1973 Mar 5;74(3):403–406. doi: 10.1016/0022-2836(73)90380-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES