Abstract
The ultrastructure of the crystalline ferric mineral that forms the central core of ferritin macro-molecules has been examined by means of ultrahigh resolution electron microscopy at 100 kV. Very high magnification dark-field images reveal the presence of either a single large crystal or several smaller crystallites within many of the cores. When the highly crystalline core contents are suitably oriented to transmit their Bragg reflections through the objective aperture, regular fringes separated by 2-9.5 Å have been visualized. The geometrical relations of lattice fringes and of periodically organized point details in these individual crystallites largely confirm the structural model proposed by Towe and Bradley (1967). The highly variable occupancy of ferric ions in certain planes of the lattice suggests that 20-33% of the iron content of fully saturated ferritin should undergo more rapid physiological release than does the remainder, and that iron uptake will have kinetics that depend upon more than only the maximal rate of crystallization.
Keywords: ultrahigh resolution electron microscopy, dark-field imaging, ferric crystallites, iron
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brady G. W., Kurkjian C. R., Lyden E. F., Robin M. B., Saltman P., Spiro T., Terzis A. The structure of an iron core analog of ferritin. Biochemistry. 1968 Jun;7(6):2185–2192. doi: 10.1021/bi00846a022. [DOI] [PubMed] [Google Scholar]
- Crichton R. R. Ferritin: structure, synthesis and function. N Engl J Med. 1971 Jun 24;284(25):1413–1422. doi: 10.1056/NEJM197106242842506. [DOI] [PubMed] [Google Scholar]
- Crichton R. R. Structure and function of ferritin. Angew Chem Int Ed Engl. 1973;12(1):57–65. doi: 10.1002/anie.197300571. [DOI] [PubMed] [Google Scholar]
- Fischbach F. A., Anderegg J. W. An x-ray scattering study of ferritin and apoferritin. J Mol Biol. 1965 Dec;14(2):458–473. doi: 10.1016/s0022-2836(65)80196-6. [DOI] [PubMed] [Google Scholar]
- Haggis G. H. The iron oxide core of the ferritin molecule. J Mol Biol. 1965 Dec;14(2):598–602. doi: 10.1016/s0022-2836(65)80210-8. [DOI] [PubMed] [Google Scholar]
- Harrison P. M., Fischbach F. A., Hoy T. G., Haggis G. H. Ferric oxyhydroxide core of ferritin. Nature. 1967 Dec 23;216(5121):1188–1190. doi: 10.1038/2161188a0. [DOI] [PubMed] [Google Scholar]
- Jones M. M., Johnston D. O. Rate of release of iron from ferritin to 1, 10-phenanthroline. Nature. 1967 Nov 4;216(5114):509–510. doi: 10.1038/216509a0. [DOI] [PubMed] [Google Scholar]
- Macara I. G., Hoy T. G., Harrison P. M. The formation of ferritin from apoferritin. Kinetics and mechanism of iron uptake. Biochem J. 1972 Jan;126(1):151–162. doi: 10.1042/bj1260151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Massover W. H., Lacaze J. C., Durrieu L. The ultrastructure of ferritin macromolecules. I. Ultrahigh voltage electron microscopy (1-3 MeV). J Ultrastruct Res. 1973 Jun;43(5):460–475. doi: 10.1016/s0022-5320(73)90022-1. [DOI] [PubMed] [Google Scholar]
- Miller A. O. Etude par sédimentation en gradient de sucrose de la ferritine marquée au 59Fe, extraite de cellules de HeLa. Biochim Biophys Acta. 1968 Jan 29;155(1):262–270. [PubMed] [Google Scholar]
- Miller J. P., Perkins D. J. Model experiments for the study of iron transfer from transferrin to ferritin. Eur J Biochem. 1969 Aug;10(1):146–151. doi: 10.1111/j.1432-1033.1969.tb00666.x. [DOI] [PubMed] [Google Scholar]
- Niederer W. Ferritin: iron incorporation and iron release. Experientia. 1970;26(2):218–220. doi: 10.1007/BF01895596. [DOI] [PubMed] [Google Scholar]
- Pape L., Multani J. S., Stitt C., Saltman P. The mobilization of iron from ferritin by chelating agents. Biochemistry. 1968 Feb;7(2):613–616. doi: 10.1021/bi00842a015. [DOI] [PubMed] [Google Scholar]
- Williams R. C., Glaeser R. M. Ultrathin carbon support films for electron microscopy. Science. 1972 Mar 3;175(4025):1000–1001. doi: 10.1126/science.175.4025.1000. [DOI] [PubMed] [Google Scholar]