Abstract
Specific antigen-binding cells from spleens of immune and nonimmune mice were isolated by the method of fiber fractionation. After removal from the fibers, these cells were assayed for their viability, their ability to rebind to fibers of the same specificity, and their in vivo response to the antigen after transfer to syngeneic irradiated recipients. These experiments indicate that the fiber method yields highly enriched populations of specific antigen-binding cells that are viable and include antigen-sensitive bone marrow-derived cells capable of undergoing mitosis and differentiating into antibody-secreting cells.
Keywords: cell fractionation, clonal selection theory, adoptive transfer, antigenic specificity
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong W. D., Diener E. A new method for the enumeration of antigen-reactive cells responsive to a purified protein antigen. J Exp Med. 1969 Feb 1;129(2):371–391. doi: 10.1084/jem.129.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edelman G. M., Rutishauser U., Millette C. F. Cell fractionation and arrangement on fibers, beads, and surfaces. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2153–2157. doi: 10.1073/pnas.68.9.2153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henry C., Kimura J., Wofsy L. Cell separation on affinity columns: the isolation of immunospecific precursor cells from unimmunized mice (lactoside hapten-lymphocyte receptors-immunology). Proc Natl Acad Sci U S A. 1972 Jan;69(1):34–36. doi: 10.1073/pnas.69.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Julius M. H., Masuda T., Herzenberg L. A. Demonstration that antigen-binding cells are precursors of antibody-producing cells after purification with a fluorescence-activated cell sorter. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1934–1938. doi: 10.1073/pnas.69.7.1934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rittenberg M. B., Pratt K. L. Antitrinitrophenyl (TNP) plaque assay. Primary response of Balb/c mice to soluble and particulate immunogen. Proc Soc Exp Biol Med. 1969 Nov;132(2):575–581. doi: 10.3181/00379727-132-34264. [DOI] [PubMed] [Google Scholar]
- Rutishauser U., Edelman G. M. Binding of thymus- and bone marrow-derived lymphoid cells to antigen-derivatized fibers. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3774–3778. doi: 10.1073/pnas.69.12.3774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rutishauser U., Millette C. F., Edelman G. M. Specific fractionation of immune cell populations. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1596–1600. doi: 10.1073/pnas.69.6.1596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sulitzeanu D., Axelrad M. Enrichment of memory cells carrying receptors for a protein antigen (HSA). Immunology. 1973 May;24(5):803–811. [PMC free article] [PubMed] [Google Scholar]
- Wigzell H., Andersson B. Cell separation on antigen-coated columns. Elimination of high rate antibody-forming cells and immunological memory cells. J Exp Med. 1969 Jan 1;129(1):23–36. doi: 10.1084/jem.129.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yahara I., Edelman G. M. Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin A. Proc Natl Acad Sci U S A. 1972 Mar;69(3):608–612. doi: 10.1073/pnas.69.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]

