Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1981 Aug;68(2):439–442. doi: 10.1104/pp.68.2.439

Effects of Environmental pH on the Internal pH of Chlorella pyrenoidosa, Scenedesmus quadricauda, and Euglena mutabilis1

Ann E Lane 1, John E Burris 1
PMCID: PMC427506  PMID: 16661932

Abstract

The effect of external pH on two laboratory-cultured acid-intolerant species (Chlorella pyrenoidosa Chick and Scenedesmus quadricauda Turp. Bréb.) and one acid-tolerant species from a natural population (Euglena mutabilis Schmitz) was examined by measuring internal pH. These measurements were made with the weak acid 14C-dimethyloxazolidine-2,4-dione after cells had been incubated for 2 and 6 hours at external pH levels from 3.0 to 8.0. Photosynthetic and respiration rates of the three species were also measured over the range of external pH levels.

All three species regulated their internal pH levels over the 6-hour incubation time. C. pyrenoidosa and S. quadricauda had internal pH levels around 7.0, regardless of external pH. E. mutabilis had a wider internal pH range, from 5.0 at low external pH to 8.0 at high external pH. External pH had no effect on either photosynthetic or respiration rates. Statistical comparisons showed that there was a significant difference between the acid-intolerant and acid-tolerant species with regard to the level of internal pH maintained and the response of internal pH to external pH.

Full text

PDF
439

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boron W. F., Roos A. Comparison of microelectrode, DMO, and methylamine methods for measuring intracellular pH. Am J Physiol. 1976 Sep;231(3):799–809. doi: 10.1152/ajplegacy.1976.231.3.799. [DOI] [PubMed] [Google Scholar]
  2. Falkner G., Horner F. pH Changes in the Cytoplasm of the Blue-Green Alga Anacystis nidulans Caused by Light-dependent Proton Flux into the Thylakoid Space. Plant Physiol. 1976 Dec;58(6):717–718. doi: 10.1104/pp.58.6.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gaensslen R. E., McCarty R. E. Determination of solute accumulation in chloroplasts by rapid centrifugal transfer through silicone fluid layers. Anal Biochem. 1972 Aug;48(2):504–514. doi: 10.1016/0003-2697(72)90105-4. [DOI] [PubMed] [Google Scholar]
  4. Heldt W. H., Werdan K., Milovancev M., Geller G. Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space. Biochim Biophys Acta. 1973 Aug 31;314(2):224–241. doi: 10.1016/0005-2728(73)90137-0. [DOI] [PubMed] [Google Scholar]
  5. Van T. K., Haller W. T., Bowes G. Comparison of the photosynthetic characteristics of three submersed aquatic plants. Plant Physiol. 1976 Dec;58(6):761–768. doi: 10.1104/pp.58.6.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Werdan K., Heldt H. W. Accumulation of bicarbonate in intact chloroplasts following a pH gradient. Biochim Biophys Acta. 1972 Dec 14;283(3):430–441. doi: 10.1016/0005-2728(72)90260-5. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES