Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1981 Aug;68(2):512–515. doi: 10.1104/pp.68.2.512

In Vitro Promotion by Auxins of Divalent Ion Release from Soybean Membranes 1

Thomas J Buckhout 2, Kenneth A Young 3, Philip S Low 3, D James Morré 2,4
PMCID: PMC427522  PMID: 16661948

Abstract

Release of divalent ions from membrane pellets of soybean hypocotyls was promoted by the natural auxin, indole-3-acetic acid, and the synthetic auxin, 2,4-dichlorophenoxyacetic acid. The calcium release occurred at auxin concentrations as low as 1 nanomolar, and maximum release was observed at 1 micromolar. Hormone concentrations greater than 1 micromolar showed reduced effectiveness in releasing membrane-associated calcium. 2,3-Dichlorophenoxyacetic acid, a weak-auxin analog of 2,4-dichlorophenoxyacetic acid, did not promote calcium release. In some experiments, the analog actually promoted calcium association with the membranes. Red blood cells treated in a similar manner to soybean hypocotyl membranes did not release calcium in response to indole-3-acetic acid. The release phenomenon was hormone specific but not ion specific. Auxin released manganese from membranes in a manner similar to that of calcium. The calcium release, following auxin treatment, is accompanied by a decrease in membrane-associated sites for calcium binding.

Full text

PDF
512

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cross J. W., Briggs W. R. Properties of a Solubilized Microsomal Auxin-binding Protein from Coleoptiles and Primary Leaves of Zea mays. Plant Physiol. 1978 Jul;62(1):152–157. doi: 10.1104/pp.62.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hardin J. W., Cherry J. H., Morré D. J., Lembi C. A. Enhancement of RNA polymerase activity by a factor released by auxin from plasma membrane. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3146–3150. doi: 10.1073/pnas.69.11.3146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hauser H., Dawson R. M. The displacement of calcium ions from phospholipid monolayers by pharmacologically active and other organic bases. Biochem J. 1968 Oct;109(5):909–916. doi: 10.1042/bj1090909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Helgerson S. L., Cramer W. A., Morré D. J. Evidence for an increase in microviscosity of plasma membranes from soybean hypocotyls induced by the plant hormone, indole-3-acetic Acid. Plant Physiol. 1976 Oct;58(4):548–551. doi: 10.1104/pp.58.4.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Low P. S., Lloyd D. H., Stein T. M., Rogers J. A., 3rd Calcium displacement by local anesthetics. Dependence on pH and anesthetic charge. J Biol Chem. 1979 May 25;254(10):4119–4125. [PubMed] [Google Scholar]
  7. Morré D. J., Bracker C. E. Ultrastructural alteration of plant plasma membranes induced by auxin and calcium ions. Plant Physiol. 1976 Oct;58(4):544–547. doi: 10.1104/pp.58.4.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rasmussen H. Cell communication, calcium ion, and cyclic adenosine monophosphate. Science. 1970 Oct 23;170(3956):404–412. doi: 10.1126/science.170.3956.404. [DOI] [PubMed] [Google Scholar]
  9. Roland J. C., Lembi C. A., Morré D. J. Phosphotungstic acid-chromic acid as a selective electron-dense stain for plasma membranes of plant cells. Stain Technol. 1972 Jul;47(4):195–200. doi: 10.3109/10520297209116484. [DOI] [PubMed] [Google Scholar]
  10. Scherer G. F., Morré D. J. In vitro stimulation by 2,4-dichlorophenoxyacetic acid of an ATPase and inhibition of phosphatidate phosphatase of plant membranes. Biochem Biophys Res Commun. 1978 Sep 14;84(1):238–247. doi: 10.1016/0006-291x(78)90288-7. [DOI] [PubMed] [Google Scholar]
  11. Shlatz L., Marinetti G. V. Calcium binding to the rat liver plasma membrane. Biochim Biophys Acta. 1972 Dec 1;290(1):70–83. doi: 10.1016/0005-2736(72)90053-3. [DOI] [PubMed] [Google Scholar]
  12. Shlatz L., Marinetti G. V. Hormone-calcium interactions with the plasma membrane of rat liver cells. Science. 1972 Apr 14;176(4031):175–177. doi: 10.1126/science.176.4031.175. [DOI] [PubMed] [Google Scholar]
  13. Watts A., Marsh D., Knowles P. F. Characterization of dimyristoylphosphatidylcholine vesicles and their dimensional changes through the phase transition: molecular control of membrane morphology. Biochemistry. 1978 May 2;17(9):1792–1801. doi: 10.1021/bi00602a034. [DOI] [PubMed] [Google Scholar]
  14. Williamson F. A., Morré D. J. Association of Phytochrome with Rough-surfaced Endoplasmic Reticulum Fractions from Soybean Hypocotyls. Plant Physiol. 1975 Dec;56(6):738–743. doi: 10.1104/pp.56.6.738. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES