Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Jan;69(1):238–242. doi: 10.1073/pnas.69.1.238

Nucleotide Sequencing of DNA: Preliminary Characterization of the Products of Specific Cleavages at Guanine, Cytosine, or Adenine Residues

Winston Salser 1,2, Kirk Fry 1,2, Clifford Brunk 1,2, Raymond Poon 1,2
PMCID: PMC427583  PMID: 4500550

Abstract

DNA synthesized in vitro from a phage M13 template has been cleaved at either guanine, adenine, or cytosine residues by ribosubstitution techniques. Fingerprints of the fragments obtained suggest that DNA sequencing will be possible with this technique.

Keywords: bacteriophage M13, ribosubstitution, DNA polymerase I, electrophoresis, two-dimensional fingerprinting

Full text

PDF
238

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Billeter M. A., Dahlberg J. E., Goodman H. M., Hindley J., Weissmann C. Nucleotide sequence analysis of an enzymatically synthesized RNA corresponding to the 5'-terminal region of Q beta RNA. Cold Spring Harb Symp Quant Biol. 1969;34:635–646. doi: 10.1101/sqb.1969.034.01.073. [DOI] [PubMed] [Google Scholar]
  2. Coulian M. Initiation of the replication of single-stranded DNA by Escherichia coli DNA polymerase. Cold Spring Harb Symp Quant Biol. 1968;33:11–20. doi: 10.1101/sqb.1968.033.01.006. [DOI] [PubMed] [Google Scholar]
  3. Danna K., Nathans D. Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2913–2917. doi: 10.1073/pnas.68.12.2913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goulian M., Kornberg A., Sinsheimer R. L. Enzymatic synthesis of DNA, XXIV. Synthesis of infectious phage phi-X174 DNA. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2321–2328. doi: 10.1073/pnas.58.6.2321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jackson J. F., Kornberg R. D., Berg P., Rajbhandary U. L., Stuart A., Khorana H. G., Kornberg A. On the heterogeneity of the deoxyribonucleic acid associated with crystalline yeast cytochrome b2. Biochim Biophys Acta. 1965 Oct 11;108(2):243–248. doi: 10.1016/0005-2787(65)90008-0. [DOI] [PubMed] [Google Scholar]
  6. Jovin T. M., Englund P. T., Bertsch L. L. Enzymatic synthesis of deoxyribonucleic acid. XXVI. Physical and chemical studies of a homogeneous deoxyribonucleic acid polymerase. J Biol Chem. 1969 Jun 10;244(11):2996–3008. [PubMed] [Google Scholar]
  7. Kelly T. J., Jr, Smith H. O. A restriction enzyme from Hemophilus influenzae. II. J Mol Biol. 1970 Jul 28;51(2):393–409. doi: 10.1016/0022-2836(70)90150-6. [DOI] [PubMed] [Google Scholar]
  8. Murray K. Nucleotide 'maps' of digests of deoxyribonucleic acid. Biochem J. 1970 Aug;118(5):831–841. doi: 10.1042/bj1180831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. RICHARDSON C. C., SCHILDKRAUT C. L., APOSHIAN H. V., KORNBERG A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. XIV. FURTHER PURIFICATION AND PROPERTIES OF DEOXYRIBONUCLEIC ACID POLYMERASE OF ESCHERICHIA COLI. J Biol Chem. 1964 Jan;239:222–232. [PubMed] [Google Scholar]
  10. Sanger F., Brownlee G. G., Barrell B. G. A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol. 1965 Sep;13(2):373–398. doi: 10.1016/s0022-2836(65)80104-8. [DOI] [PubMed] [Google Scholar]
  11. Wu R., Taylor E. Nucleotide sequence analysis of DNA. II. Complete nucleotide sequence of the cohesive ends of bacteriophage lambda DNA. J Mol Biol. 1971 May 14;57(3):491–511. doi: 10.1016/0022-2836(71)90105-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES