Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Jan 17;92(2):502–506. doi: 10.1073/pnas.92.2.502

A cluster of basic amino acids within an alpha-helix is essential for alpha-subunit recognition by the glycoprotein hormone N-acetylgalactosaminyltransferase.

B J Mengeling 1, S M Manzella 1, J U Baenziger 1
PMCID: PMC42769  PMID: 7831319

Abstract

The glycoprotein hormone N-acetylgalactosaminyltransferase is responsible for synthesis of Asn-linked oligosaccharides terminating with GalNAc-4-SO4 on lutropin, thyrotropin, and the uncombined glycoprotein hormone alpha subunit. We previously established that a recognition determinant for the N-acetylgalactosaminyltransferase is contained within a 22-amino acid glycopeptide fragment of the alpha subunit. We proposed that the tripeptide Pro-Leu-Arg is an essential element of the recognition determinant. Using site-directed mutagenesis we have examined the role of individual amino acids in recognition by the glycoprotein hormone N-acetylgalactosaminyltransferase. Within the sequence Pro40-Leu41-Arg42-Ser43-Lys44-Lys45, Lys44, and Lys45, as well as Arg42 of the tripeptide, are essential for recognition. Substitution of the Leu41 with other amino acids can either increase or decrease the rate of GalNAc transfer over an 8-fold range, suggesting that the middle amino acid of the tripeptide plays a modulatory role in recognition. The critical Leu41-Arg42 and Lys44-Lys45 residues are present on the same surface of an alpha-helix, which projects from the surface of the alpha subunit. Our results indicate that an essential element of the recognition determinant consists of a cluster of basic residues and that neutral but not negatively charged residues are tolerated within this cluster.

Full text

PDF
502

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baenziger J. U., Green E. D. Pituitary glycoprotein hormone oligosaccharides: structure, synthesis and function of the asparagine-linked oligosaccharides on lutropin, follitropin and thyrotropin. Biochim Biophys Acta. 1988 Jun 9;947(2):287–306. doi: 10.1016/0304-4157(88)90012-3. [DOI] [PubMed] [Google Scholar]
  2. Baranski T. J., Cantor A. B., Kornfeld S. Lysosomal enzyme phosphorylation. I. Protein recognition determinants in both lobes of procathepsin D mediate its interaction with UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase. J Biol Chem. 1992 Nov 15;267(32):23342–23348. [PubMed] [Google Scholar]
  3. Baranski T. J., Faust P. L., Kornfeld S. Generation of a lysosomal enzyme targeting signal in the secretory protein pepsinogen. Cell. 1990 Oct 19;63(2):281–291. doi: 10.1016/0092-8674(90)90161-7. [DOI] [PubMed] [Google Scholar]
  4. Bielinska M., Boime I. Site-directed mutagenesis defines a domain in the gonadotropin alpha-subunit required for assembly with the chorionic gonadotropin beta-subunit. Mol Endocrinol. 1992 Feb;6(2):261–271. doi: 10.1210/mend.6.2.1569970. [DOI] [PubMed] [Google Scholar]
  5. Dharmesh S. M., Skelton T. P., Baenziger J. U. Co-ordinate and restricted expression of the ProXaaArg/Lys-specific GalNAc-transferase and the GalNAc beta 1,4GlcNAc beta 1,2Man alpha-4-sulfotransferase. J Biol Chem. 1993 Aug 15;268(23):17096–17102. [PubMed] [Google Scholar]
  6. Green E. D., Baenziger J. U. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin. I. Structural elucidation of the sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones. J Biol Chem. 1988 Jan 5;263(1):25–35. [PubMed] [Google Scholar]
  7. Green E. D., Baenziger J. U. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin. II. Distributions of sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones. J Biol Chem. 1988 Jan 5;263(1):36–44. [PubMed] [Google Scholar]
  8. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  9. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  10. Lang L., Reitman M., Tang J., Roberts R. M., Kornfeld S. Lysosomal enzyme phosphorylation. Recognition of a protein-dependent determinant allows specific phosphorylation of oligosaccharides present on lysosomal enzymes. J Biol Chem. 1984 Dec 10;259(23):14663–14671. [PubMed] [Google Scholar]
  11. Lapthorn A. J., Harris D. C., Littlejohn A., Lustbader J. W., Canfield R. E., Machin K. J., Morgan F. J., Isaacs N. W. Crystal structure of human chorionic gonadotropin. Nature. 1994 Jun 9;369(6480):455–461. doi: 10.1038/369455a0. [DOI] [PubMed] [Google Scholar]
  12. Matzuk M. M., Boime I. The role of the asparagine-linked oligosaccharides of the alpha subunit in the secretion and assembly of human chorionic gonadotrophin. J Cell Biol. 1988 Apr;106(4):1049–1059. doi: 10.1083/jcb.106.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mengeling B. J., Smith P. L., Stults N. L., Smith D. F., Baenziger J. U. A microplate assay for analysis of solution-phase glycosyltransferase reactions: determination of kinetic constants. Anal Biochem. 1991 Dec;199(2):286–292. doi: 10.1016/0003-2697(91)90103-z. [DOI] [PubMed] [Google Scholar]
  14. Parsons T. F., Bloomfield G. A., Pierce J. G. Purification of an alternate form of the alpha subunit of the glycoprotein hormones from bovine pituitaries and identification of its O-linked oligosaccharide. J Biol Chem. 1983 Jan 10;258(1):240–244. [PubMed] [Google Scholar]
  15. Skelton T. P., Kumar S., Smith P. L., Beranek M. C., Baenziger J. U. Pro-opiomelanocortin synthesized by corticotrophs bears asparagine-linked oligosaccharides terminating with SO4-4GalNAc beta 1,4GlcNAc beta 1,2Man alpha. J Biol Chem. 1992 Jun 25;267(18):12998–13006. [PubMed] [Google Scholar]
  16. Smith P. L., Baenziger J. U. A pituitary N-acetylgalactosamine transferase that specifically recognizes glycoprotein hormones. Science. 1988 Nov 11;242(4880):930–933. doi: 10.1126/science.2460923. [DOI] [PubMed] [Google Scholar]
  17. Smith P. L., Baenziger J. U. Molecular basis of recognition by the glycoprotein hormone-specific N-acetylgalactosamine-transferase. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):329–333. doi: 10.1073/pnas.89.1.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith P. L., Baenziger J. U. Recognition by the glycoprotein hormone-specific N-acetylgalactosaminetransferase is independent of hormone native conformation. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7275–7279. doi: 10.1073/pnas.87.18.7275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Smith P. L., Lowe J. B. Molecular cloning of a murine N-acetylgalactosamine transferase cDNA that determines expression of the T lymphocyte-specific CT oligosaccharide differentiation antigen. J Biol Chem. 1994 May 27;269(21):15162–15171. [PubMed] [Google Scholar]
  20. Smith P. L., Skelton T. P., Fiete D., Dharmesh S. M., Beranek M. C., MacPhail L., Broze G. J., Jr, Baenziger J. U. The asparagine-linked oligosaccharides on tissue factor pathway inhibitor terminate with SO4-4GalNAc beta 1, 4GlcNAc beta 1,2 Mana alpha. J Biol Chem. 1992 Sep 25;267(27):19140–19146. [PubMed] [Google Scholar]
  21. Sousa M. C., Ferrero-Garcia M. A., Parodi A. J. Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. Biochemistry. 1992 Jan 14;31(1):97–105. doi: 10.1021/bi00116a015. [DOI] [PubMed] [Google Scholar]
  22. Trombetta S. E., Parodi A. J. Purification to apparent homogeneity and partial characterization of rat liver UDP-glucose:glycoprotein glucosyltransferase. J Biol Chem. 1992 May 5;267(13):9236–9240. [PubMed] [Google Scholar]
  23. Wu H., Lustbader J. W., Liu Y., Canfield R. E., Hendrickson W. A. Structure of human chorionic gonadotropin at 2.6 A resolution from MAD analysis of the selenomethionyl protein. Structure. 1994 Jun 15;2(6):545–558. doi: 10.1016/s0969-2126(00)00054-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES