Abstract
The effects of cotranslational protein modification on the process of protein folding are poorly understood. Time-resolved fluorescence energy transfer has been used to assess the impact of glycosylation on the conformational dynamics of flexible oligopeptides. The peptide sequences examined are selected from glycoproteins of known three-dimensional structure. The energy transfer modulation associated with N-linked glycosylation is consistent with the glycopeptides sampling different conformational profiles in water. Results show that glycosylation causes the modified peptides to adopt a different ensemble of conformations, and for some peptides this change may lead to conformations that are more compact and better approximate the conformation of these peptides in the final folded protein. This result further implies that cotranslational glycosylation can trigger the timely formation of structural nucleation elements and thus assist in the complex process of protein folding.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aubert J. P., Helbecque N., Loucheux-Lefebvre M. H. Circular dichroism studies of synthetic Asn-X-Ser/Thr-containing peptides: Structure-glycosylation relationship. Arch Biochem Biophys. 1981 Apr 15;208(1):20–29. doi: 10.1016/0003-9861(81)90118-1. [DOI] [PubMed] [Google Scholar]
- Beals J. M., Haas E., Krausz S., Scheraga H. A. Conformational studies of a peptide corresponding to a region of the C-terminus of ribonuclease A: implications as a potential chain-folding initiation site. Biochemistry. 1991 Aug 6;30(31):7680–7692. doi: 10.1021/bi00245a004. [DOI] [PubMed] [Google Scholar]
- Beechem J. M., Haas E. Simultaneous determination of intramolecular distance distributions and conformational dynamics by global analysis of energy transfer measurements. Biophys J. 1989 Jun;55(6):1225–1236. doi: 10.1016/S0006-3495(89)82918-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beintema J. J. Do asparagine-linked carbohydrate chains in glycoproteins have a preference for beta-bends? Biosci Rep. 1986 Aug;6(8):709–714. doi: 10.1007/BF01116537. [DOI] [PubMed] [Google Scholar]
- Bergman L. W., Kuehl W. M. Temporal relationship of translation and glycosylation of immunoglobulin heavy and light chains. Biochemistry. 1978 Nov 28;17(24):5174–5180. doi: 10.1021/bi00617a017. [DOI] [PubMed] [Google Scholar]
- Copeland C. S., Zimmer K. P., Wagner K. R., Healey G. A., Mellman I., Helenius A. Folding, trimerization, and transport are sequential events in the biogenesis of influenza virus hemagglutinin. Cell. 1988 Apr 22;53(2):197–209. doi: 10.1016/0092-8674(88)90381-9. [DOI] [PubMed] [Google Scholar]
- Davis J. T., Hirani S., Bartlett C., Reid B. R. 1H NMR studies on an Asn-linked glycopeptide. GlcNAc-1 C2-N2 bond is rigid in H2O. J Biol Chem. 1994 Feb 4;269(5):3331–3338. [PubMed] [Google Scholar]
- Eis P. S., Lakowicz J. R. Time-resolved energy transfer measurements of donor-acceptor distance distributions and intramolecular flexibility of a CCHH zinc finger peptide. Biochemistry. 1993 Aug 10;32(31):7981–7993. doi: 10.1021/bi00082a020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haas E., Wilchek M., Katchalski-Katzir E., Steinberg I. Z. Distribution of end-to-end distances of oligopeptides in solution as estimated by energy transfer. Proc Natl Acad Sci U S A. 1975 May;72(5):1807–1811. doi: 10.1073/pnas.72.5.1807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hickman S., Kulczycki A., Jr, Lynch R. G., Kornfeld S. Studies of the mechanism of tunicamycin in hibition of IgA and IgE secretion by plasma cells. J Biol Chem. 1977 Jun 25;252(12):4402–4408. [PubMed] [Google Scholar]
- Joao H. C., Scragg I. G., Dwek R. A. Effects of glycosylation on protein conformation and amide proton exchange rates in RNase B. FEBS Lett. 1992 Aug 3;307(3):343–346. doi: 10.1016/0014-5793(92)80709-p. [DOI] [PubMed] [Google Scholar]
- Johnson D. A., Leathers V. L., Martinez A. M., Walsh D. A., Fletcher W. H. Fluorescence resonance energy transfer within a heterochromatic cAMP-dependent protein kinase holoenzyme under equilibrium conditions: new insights into the conformational changes that result in cAMP-dependent activation. Biochemistry. 1993 Jun 29;32(25):6402–6410. doi: 10.1021/bi00076a013. [DOI] [PubMed] [Google Scholar]
- Kiely M. L., McKnight G. S., Schimke R. T. Studies on the attachment of carbohydrate to ovalbumin nascent chains in hen oviduct. J Biol Chem. 1976 Sep 25;251(18):5490–5495. [PubMed] [Google Scholar]
- Maliwal B. P., Lakowicz J. R., Kupryszewski G., Rekowski P. Fluorescence study of conformational flexibility of RNase S-peptide: distance-distribution, end-to-end diffusion, and anisotropy decays. Biochemistry. 1993 Nov 23;32(46):12337–12345. doi: 10.1021/bi00097a009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marquardt T., Helenius A. Misfolding and aggregation of newly synthesized proteins in the endoplasmic reticulum. J Cell Biol. 1992 May;117(3):505–513. doi: 10.1083/jcb.117.3.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews C. R. Pathways of protein folding. Annu Rev Biochem. 1993;62:653–683. doi: 10.1146/annurev.bi.62.070193.003253. [DOI] [PubMed] [Google Scholar]
- Otvos L., Jr, Thurin J., Kollat E., Urge L., Mantsch H. H., Hollosi M. Glycosylation of synthetic peptides breaks helices. Phosphorylation results in distorted structure. Int J Pept Protein Res. 1991 Nov;38(5):476–482. doi: 10.1111/j.1399-3011.1991.tb01529.x. [DOI] [PubMed] [Google Scholar]
- Paulson J. C. Glycoproteins: what are the sugar chains for? Trends Biochem Sci. 1989 Jul;14(7):272–276. doi: 10.1016/0968-0004(89)90062-5. [DOI] [PubMed] [Google Scholar]
- Pfeffer S. R., Rothman J. E. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu Rev Biochem. 1987;56:829–852. doi: 10.1146/annurev.bi.56.070187.004145. [DOI] [PubMed] [Google Scholar]
- Riederer M. A., Hinnen A. Removal of N-glycosylation sites of the yeast acid phosphatase severely affects protein folding. J Bacteriol. 1991 Jun;173(11):3539–3546. doi: 10.1128/jb.173.11.3539-3546.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rowling P. J., Freedman R. B. Folding, assembly, and posttranslational modification of proteins within the lumen of the endoplasmic reticulum. Subcell Biochem. 1993;21:41–80. doi: 10.1007/978-1-4615-2912-5_3. [DOI] [PubMed] [Google Scholar]
- Rudd P. M., Joao H. C., Coghill E., Fiten P., Saunders M. R., Opdenakker G., Dwek R. A. Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry. 1994 Jan 11;33(1):17–22. doi: 10.1021/bi00167a003. [DOI] [PubMed] [Google Scholar]
- Schiller P. W. Study of adrenocorticotropic hormone conformation by evaluation of intramolecular resonance energy transfer in N -dansyllysine 21 -ACTH-(1-24)-tetrakosipeptide. Proc Natl Acad Sci U S A. 1972 Apr;69(4):975–979. doi: 10.1073/pnas.69.4.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stryer L. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem. 1978;47:819–846. doi: 10.1146/annurev.bi.47.070178.004131. [DOI] [PubMed] [Google Scholar]
- Suh S. W., Bhat T. N., Navia M. A., Cohen G. H., Rao D. N., Rudikoff S., Davies D. R. The galactan-binding immunoglobulin Fab J539: an X-ray diffraction study at 2.6-A resolution. Proteins. 1986 Sep;1(1):74–80. doi: 10.1002/prot.340010112. [DOI] [PubMed] [Google Scholar]
- Wilson I. A., Ladner R. C., Skehel J. J., Wiley D. C. The structure and role of the carbohydrate moieties of influenza virus haemagglutinin. Biochem Soc Trans. 1983 Apr;11(2):145–147. [PubMed] [Google Scholar]
- Wilson I. A., Skehel J. J., Wiley D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature. 1981 Jan 29;289(5796):366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
- Wormald M. R., Wooten E. W., Bazzo R., Edge C. J., Feinstein A., Rademacher T. W., Dwek R. A. The conformational effects of N-glycosylation on the tailpiece from serum IgM. Eur J Biochem. 1991 May 23;198(1):131–139. doi: 10.1111/j.1432-1033.1991.tb15995.x. [DOI] [PubMed] [Google Scholar]
- Wright P. E., Dyson H. J., Lerner R. A. Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding. Biochemistry. 1988 Sep 20;27(19):7167–7175. doi: 10.1021/bi00419a001. [DOI] [PubMed] [Google Scholar]
- Wu P. G., Rice K. G., Brand L., Lee Y. C. Differential flexibilities in three branches of an N-linked triantennary glycopeptide. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9355–9359. doi: 10.1073/pnas.88.20.9355. [DOI] [PMC free article] [PubMed] [Google Scholar]