Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Jan 3;92(1):276–279. doi: 10.1073/pnas.92.1.276

Basilar membrane resonance in the cochlea of the mustached bat.

M Kössl 1, I J Russell 1
PMCID: PMC42861  PMID: 7816832

Abstract

The mustached bat (Pteronotus parnellii) detects the wing beats of prey insects by resolving small frequency modulations in the return echoes to the constant frequency component of its echolocation call at about 61 kHz. The fine frequency discrimination required for this task is due largely to the mechanical properties of the cochlea, as indicated indirectly by the presence of large otoacoustic emissions at 61 kHz. A laser diode interferometer was used to measure basilar membrane displacements in the basal turn of the cochlea at a location that is 4-6 mm basal to the 61-kHz place on the basilar membrane. The region of the basilar membrane from which the measurements were made was tuned not only to those characteristic of this location (88-98 kHz) but also very sharply tuned to 61 kHz. The 61-kHz tuning was labile and could be modeled as a simple resonance. The resonance is not restricted to the 61-kHz place but involves more basal regions. We also provide direct evidence to show that otoacoustic emissions from the ear propagate along the basilar membrane.

Full text

PDF
276

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. B. Cochlear micromechanics--a physical model of transduction. J Acoust Soc Am. 1980 Dec;68(6):1660–1670. doi: 10.1121/1.385198. [DOI] [PubMed] [Google Scholar]
  2. Brownell W. E., Bader C. R., Bertrand D., de Ribaupierre Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science. 1985 Jan 11;227(4683):194–196. doi: 10.1126/science.3966153. [DOI] [PubMed] [Google Scholar]
  3. Davis H. An active process in cochlear mechanics. Hear Res. 1983 Jan;9(1):79–90. doi: 10.1016/0378-5955(83)90136-3. [DOI] [PubMed] [Google Scholar]
  4. Evans E. F. The frequency response and other properties of single fibres in the guinea-pig cochlear nerve. J Physiol. 1972 Oct;226(1):263–287. doi: 10.1113/jphysiol.1972.sp009984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Henson O. W., Koplas P. A., Keating A. W., Huffman R. F., Henson M. M. Cochlear resonance in the mustached bat: behavioral adaptations. Hear Res. 1990 Dec;50(1-2):259–273. doi: 10.1016/0378-5955(90)90050-y. [DOI] [PubMed] [Google Scholar]
  6. Huffman R. F., Henson O. W., Jr Labile cochlear tuning in the mustached bat. I. Concomitant shifts in biosonar emission frequency. J Comp Physiol A. 1993 Jan;171(6):725–734. doi: 10.1007/BF00213069. [DOI] [PubMed] [Google Scholar]
  7. Kemp D. T. Physiologically active cochlear micromechanics--one source of tinnitus. Ciba Found Symp. 1981;85:54–81. doi: 10.1002/9780470720677.ch5. [DOI] [PubMed] [Google Scholar]
  8. Kolston P. J., Viergever M. A., de Boer E., Diependaal R. J. Realistic mechanical tuning in a micromechanical cochlear model. J Acoust Soc Am. 1989 Jul;86(1):133–140. doi: 10.1121/1.398332. [DOI] [PubMed] [Google Scholar]
  9. Kössl M., Vater M. Evoked acoustic emissions and cochlear microphonics in the mustache bat, Pteronotus parnellii. Hear Res. 1985;19(2):157–170. doi: 10.1016/0378-5955(85)90120-0. [DOI] [PubMed] [Google Scholar]
  10. Kössl M., Vater M. The cochlear frequency map of the mustache bat, Pteronotus parnellii. J Comp Physiol A. 1985 Nov;157(5):687–697. doi: 10.1007/BF01351362. [DOI] [PubMed] [Google Scholar]
  11. Neuweiler G. Auditory adaptations for prey capture in echolocating bats. Physiol Rev. 1990 Jul;70(3):615–641. doi: 10.1152/physrev.1990.70.3.615. [DOI] [PubMed] [Google Scholar]
  12. Pollak G., Henson O. W., Jr, Novick A. Cochlear Microphonic Audiograms in the "Pure Tone" Bat Chilonycteris parnellii parnellii. Science. 1972 Apr 7;176(4030):66–68. doi: 10.1126/science.176.4030.66. [DOI] [PubMed] [Google Scholar]
  13. Suga N., Jen P. H. Further studies on the peripheral auditory system of 'CF-FM' bats specialized for fine frequency analysis of Doppler-shifted echoes. J Exp Biol. 1977 Aug;69:207–232. doi: 10.1242/jeb.69.1.207. [DOI] [PubMed] [Google Scholar]
  14. Suga N., Simmons J. A., Jen P. H. Peripheral specialization for fine analysis of doppler-shifted echoes in the auditory system of the "CF-FM" bat Pteronotus parnellii. J Exp Biol. 1975 Aug;63(1):161–192. doi: 10.1242/jeb.63.1.161. [DOI] [PubMed] [Google Scholar]
  15. Wilson J. P., Bruns V. Basilar membrane tuning properties in the specialised cochlea of the CF-bat, Rhinolophus ferrumequinum. Hear Res. 1983 Apr;10(1):15–35. doi: 10.1016/0378-5955(83)90016-3. [DOI] [PubMed] [Google Scholar]
  16. Zwislocki J. J. Analysis of cochlear mechanics. Hear Res. 1986;22:155–169. doi: 10.1016/0378-5955(86)90091-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES