Abstract
We report a blind test of lattice-model-based search strategies for finding global minima of model protein chains. One of us (E.I.S.) selected 10 compact conformations of 48-mer chains on the three-dimensional cubic lattice and used their inverse folding algorithm to design HP (H, hydrophobic; P, polar) sequences that should fold to those "target" structures. The sequences, but not the structures, were sent to the UCSF group (K.Y., K.M.F., P.D.T., H.S.C., and K.A.D.), who used two methods to attempt to find the globally optimal conformations: "hydrophobic zippers" and a constraint-based hydrophobic core construction (CHCC) method. The CHCC method found global minima in all cases, and the hydrophobic zippers method found global minima in some cases, in minutes to hours on workstations. In 9 out of 10 sequences, the CHCC method found lower energy conformations than the 48-mers were designed to fold to. Thus the search strategies succeed for the HP model but the design strategy does not. For every sequence the global energy minimum was found to have multiple degeneracy with 10(3) to 10(6) conformations. We discuss the implications of these results for (i) searching conformational spaces of simple models of proteins and (ii) how these simple models relate to proteins.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Argos P. Analysis of sequence-similar pentapeptides in unrelated protein tertiary structures. Strategies for protein folding and a guide for site-directed mutagenesis. J Mol Biol. 1987 Sep 20;197(2):331–348. doi: 10.1016/0022-2836(87)90127-6. [DOI] [PubMed] [Google Scholar]
- Bryngelson J. D., Wolynes P. G. Spin glasses and the statistical mechanics of protein folding. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7524–7528. doi: 10.1073/pnas.84.21.7524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen F. E., Sternberg M. J., Phillips D. C., Kuntz I. D., Kollman P. A. A diffusion--collision--adhesion model for the kinetics of myoglobin refolding. Nature. 1980 Aug 7;286(5773):632–634. doi: 10.1038/286632a0. [DOI] [PubMed] [Google Scholar]
- Finkelstein A. V., Reva B. A. A search for the most stable folds of protein chains. Nature. 1991 Jun 6;351(6326):497–499. doi: 10.1038/351497a0. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
- Goldstein R. A., Luthey-Schulten Z. A., Wolynes P. G. Optimal protein-folding codes from spin-glass theory. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4918–4922. doi: 10.1073/pnas.89.11.4918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein R. A., Luthey-Schulten Z. A., Wolynes P. G. Protein tertiary structure recognition using optimized Hamiltonians with local interactions. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9029–9033. doi: 10.1073/pnas.89.19.9029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Handel T. M., Williams S. A., DeGrado W. F. Metal ion-dependent modulation of the dynamics of a designed protein. Science. 1993 Aug 13;261(5123):879–885. doi: 10.1126/science.8346440. [DOI] [PubMed] [Google Scholar]
- Honeycutt J. D., Thirumalai D. The nature of folded states of globular proteins. Biopolymers. 1992 Jun;32(6):695–709. doi: 10.1002/bip.360320610. [DOI] [PubMed] [Google Scholar]
- Lattman E. E., Fiebig K. M., Dill K. A. Modeling compact denatured states of proteins. Biochemistry. 1994 May 24;33(20):6158–6166. doi: 10.1021/bi00186a015. [DOI] [PubMed] [Google Scholar]
- Lau K. F., Dill K. A. Theory for protein mutability and biogenesis. Proc Natl Acad Sci U S A. 1990 Jan;87(2):638–642. doi: 10.1073/pnas.87.2.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sali A., Shakhnovich E., Karplus M. Kinetics of protein folding. A lattice model study of the requirements for folding to the native state. J Mol Biol. 1994 Feb 4;235(5):1614–1636. doi: 10.1006/jmbi.1994.1110. [DOI] [PubMed] [Google Scholar]
- Shakhnovich E. I., Gutin A. M. Engineering of stable and fast-folding sequences of model proteins. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7195–7199. doi: 10.1073/pnas.90.15.7195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shakhnovich E. I., Gutin A. M. Formation of unique structure in polypeptide chains. Theoretical investigation with the aid of a replica approach. Biophys Chem. 1989 Nov;34(3):187–199. doi: 10.1016/0301-4622(89)80058-4. [DOI] [PubMed] [Google Scholar]
- Shortle D., Chan H. S., Dill K. A. Modeling the effects of mutations on the denatured states of proteins. Protein Sci. 1992 Feb;1(2):201–215. doi: 10.1002/pro.5560010202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Straub J. E., Thirumalai D. Exploring the energy landscape in proteins. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):809–813. doi: 10.1073/pnas.90.3.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun S. Reduced representation model of protein structure prediction: statistical potential and genetic algorithms. Protein Sci. 1993 May;2(5):762–785. doi: 10.1002/pro.5560020508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yue K., Dill K. A. Forces of tertiary structural organization in globular proteins. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):146–150. doi: 10.1073/pnas.92.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yue K., Dill K. A. Inverse protein folding problem: designing polymer sequences. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4163–4167. doi: 10.1073/pnas.89.9.4163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yue K, Dill KA. Sequence-structure relationships in proteins and copolymers. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Sep;48(3):2267–2278. doi: 10.1103/physreve.48.2267. [DOI] [PubMed] [Google Scholar]