Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Jan 3;92(1):330–334. doi: 10.1073/pnas.92.1.330

DNA alterations detected in the progeny of paternally irradiated Japanese medaka fish (Oryzias latipes).

Y Kubota 1, A Shimada 1, A Shima 1
PMCID: PMC42872  PMID: 7816843

Abstract

A nonmammalian test system for germ-cell mutagenesis has been developed by using the Japanese medaka fish. We describe a system for detecting DNA alterations in F1 progeny descended from the gamma-irradiated male medaka that uses an arbitrarily primed polymerase chain reaction and fingerprinting. A combination of these two methods has some advantages for screening changes in genomic DNA of individual progeny because this detection system can (i) screen for mutational events before embryos with dominant lethal mutations are eliminated during development and (ii) detect DNA changes in the progeny of irradiated males without functional selection and bias, such as resistance to chemicals. DNA alterations are detected as changes in patterns (i.e., band loss and/or band gain) of DNA fingerprints of progeny descended from males whose spermatozoa or spermatids were gamma-irradiated (4.75 or 9.50 Gy). We determined the frequency of gamma-irradiation-induced band loss in arbitrarily primed polymerase chain reaction fingerprints of DNA from severely malformed embryos with dominant lethal mutations and hatched viable embryos. The frequency of band loss in both dominant lethal embryos and hatched viable embryos increased with increasing gamma-ray dose, although more so in the former. We detected a new band in the fingerprints as a heritable DNA alteration but not a viability- or phenotype-affecting DNA alteration in two viable mutants recovered after gamma-irradiation experiments. A cloned amplified fragment of the new band contained a repeated sequence of p(ATGT)n.

Full text

PDF
330

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini A. M., Hofer M., Calos M. P., Miller J. H. On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions. Cell. 1982 Jun;29(2):319–328. doi: 10.1016/0092-8674(82)90148-9. [DOI] [PubMed] [Google Scholar]
  2. Dubrova Y. E., Jeffreys A. J., Malashenko A. M. Mouse minisatellite mutations induced by ionizing radiation. Nat Genet. 1993 Sep;5(1):92–94. doi: 10.1038/ng0993-92. [DOI] [PubMed] [Google Scholar]
  3. Egami N., Hyodo-Taguchi Y. An autoradiographic examination of rate of spermatogenesis at different temperatures in the fish, Oryzias latipes. Exp Cell Res. 1967 Sep;47(3):665–667. doi: 10.1016/0014-4827(67)90034-1. [DOI] [PubMed] [Google Scholar]
  4. Fu Y. H., Kuhl D. P., Pizzuti A., Pieretti M., Sutcliffe J. S., Richards S., Verkerk A. J., Holden J. J., Fenwick R. G., Jr, Warren S. T. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell. 1991 Dec 20;67(6):1047–1058. doi: 10.1016/0092-8674(91)90283-5. [DOI] [PubMed] [Google Scholar]
  5. Fuscoe J. C., Zimmerman L. J., Harrington-Brock K., Moore M. M. Large deletions are tolerated at the hprt locus of in vivo derived human T-lymphocytes. Mutat Res. 1992 Dec;283(4):255–262. doi: 10.1016/0165-7992(92)90057-o. [DOI] [PubMed] [Google Scholar]
  6. Glickman B. W., Rietveld K., Aaron C. S. gamma-Ray induced mutational spectrum in the lacI gene of Escherichia coli: comparison of induced and spontaneous spectra at the molecular level. Mutat Res. 1980 Jan;69(1):1–12. doi: 10.1016/0027-5107(80)90171-2. [DOI] [PubMed] [Google Scholar]
  7. Grosovsky A. J., Drobetsky E. A., deJong P. J., Glickman B. W. Southern analysis of genomic alterations in gamma-ray-induced aprt- hamster cell mutants. Genetics. 1986 Jun;113(2):405–415. doi: 10.1093/genetics/113.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kubota Y., Shimada A., Shima A. Detection of gamma-ray-induced DNA damages in malformed dominant lethal embryos of the Japanese medaka (Oryzias latipes) using AP-PCR fingerprinting. Mutat Res. 1992 Dec;283(4):263–270. doi: 10.1016/0165-7992(92)90058-p. [DOI] [PubMed] [Google Scholar]
  9. Meuth M. The structure of mutation in mammalian cells. Biochim Biophys Acta. 1990 Jun 1;1032(1):1–17. doi: 10.1016/0304-419x(90)90009-p. [DOI] [PubMed] [Google Scholar]
  10. Nalbantoglu J., Hartley D., Phear G., Tear G., Meuth M. Spontaneous deletion formation at the aprt locus of hamster cells: the presence of short sequence homologies and dyad symmetries at deletion termini. EMBO J. 1986 Jun;5(6):1199–1204. doi: 10.1002/j.1460-2075.1986.tb04347.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Neel J. V., Lewis S. E. The comparative radiation genetics of humans and mice. Annu Rev Genet. 1990;24:327–362. doi: 10.1146/annurev.ge.24.120190.001551. [DOI] [PubMed] [Google Scholar]
  12. Neel J. V., Satoh C., Myers R. International Commission for Protection against Environmental Mutagens and Carcinogens. Report of a workshop on the application of molecular genetics to the study of mutation in the children of atomic bomb survivors. Mutat Res. 1993 Feb;291(1):1–20. doi: 10.1016/0165-1161(93)90012-o. [DOI] [PubMed] [Google Scholar]
  13. Nicklas J. A., Hunter T. C., O'Neill J. P., Albertini R. J. Fine structure mapping of the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene region of the human X chromosome (Xq26). Am J Hum Genet. 1991 Aug;49(2):267–278. [PMC free article] [PubMed] [Google Scholar]
  14. Peinado M. A., Malkhosyan S., Velazquez A., Perucho M. Isolation and characterization of allelic losses and gains in colorectal tumors by arbitrarily primed polymerase chain reaction. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10065–10069. doi: 10.1073/pnas.89.21.10065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Roth D. B., Wilson J. H. Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol Cell Biol. 1986 Dec;6(12):4295–4304. doi: 10.1128/mcb.6.12.4295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shima A., Shimada A. Development of a possible nonmammalian test system for radiation-induced germ-cell mutagenesis using a fish, the Japanese medaka (Oryzias latipes). Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2545–2549. doi: 10.1073/pnas.88.6.2545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shima A., Shimada A. Induction of mutations in males of the fish Oryzias latipes at a specific locus after gamma-irradiation. Mutat Res. 1988 Mar;198(1):93–98. doi: 10.1016/0027-5107(88)90044-9. [DOI] [PubMed] [Google Scholar]
  18. Spritz R. A., Orkin S. H. Duplication followed by deletion accounts for the structure of an Indian deletion beta (0)-thalassemia gene. Nucleic Acids Res. 1982 Dec 20;10(24):8025–8029. doi: 10.1093/nar/10.24.8025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Suzuki Y., Sekiya T., Hayashi K. Allele-specific polymerase chain reaction: a method for amplification and sequence determination of a single component among a mixture of sequence variants. Anal Biochem. 1991 Jan;192(1):82–84. doi: 10.1016/0003-2697(91)90188-y. [DOI] [PubMed] [Google Scholar]
  20. Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990 Dec 25;18(24):7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES