Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1974 Feb;5(2):169–178. doi: 10.1128/aac.5.2.169

Trimethoprim Action and Its Analogy with Thymine Starvation

S G B Amyes 1, J T Smith 1
PMCID: PMC428939  PMID: 4275615

Abstract

In a minimal medium, trimethoprim is merely bacteriostatic on the prototroph Escherichia coli 114. The drug was bactericidal when the amino acids methionine and glycine, plus a purine or purine nucleoside, were also present. This response could be reversed completely when thymine and lysine were added to the culture. Methionine, glycine, and the purine are thought to maintain the integrity of the tetrahydrofolate pool under trimethoprim treatment and prevent the thymidylate synthetase reaction. Thus, the organism behaves phenotypically as a thymineless mutant. The mechanisms by which thymine and lysine reverse the bactericidal effect of trimethoprim in a minimal medium containing methionine, glycine, and adenine is discussed.

Full text

PDF
169

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angehrn P., Then R. Nature of trimethoprim-induced death in Escherichia coli. Arzneimittelforschung. 1973 Mar;23(3):447–451. [PubMed] [Google Scholar]
  2. BARNER H. D., COHEN S. S. The induction of thymine synthesis by T2 infection of a thymine requiring mutant of Escherichia coli. J Bacteriol. 1954 Jul;68(1):80–88. doi: 10.1128/jb.68.1.80-88.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BARNER H. D., COHEN S. S. Virus-induced acquisition of metabolic function. IV. Thymidylate synthetase in thymine-requiring Escherichia coli infected by T2 and T5 bacteriophages. J Biol Chem. 1959 Nov;234:2987–2991. [PubMed] [Google Scholar]
  4. Beacham I. R., Barth P. T., Pritchard R. H. Constitutivity of thymidine phosphorylase in deoxyriboaldolase negative strains: dependence on thymine requirement and concentration. Biochim Biophys Acta. 1968 Sep 24;166(2):589–592. doi: 10.1016/0005-2787(68)90251-7. [DOI] [PubMed] [Google Scholar]
  5. Beacham I. R., Pritchard R. H. The role of nucleoside phosphorylases in the degradation of deoxyribonucleosides by thymine-requiring mutants of E. coli. Mol Gen Genet. 1971;110(4):289–298. doi: 10.1007/BF00438271. [DOI] [PubMed] [Google Scholar]
  6. Bertino J. B., Stacey K. A. A suggested mechanism for the selective procedure for isolating thymine-requiring mutants of Escherichia coli. Biochem J. 1966 Nov;101(2):32C–33C. doi: 10.1042/bj1010032c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Breitman T. R., Finkleman A., Rabinovitz M. Methionineless death in Escherichia coli. J Bacteriol. 1971 Dec;108(3):1168–1173. doi: 10.1128/jb.108.3.1168-1173.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. CRAWFORD L. V. Thymine metabolism in strains of Escherichia coli. Biochim Biophys Acta. 1958 Nov;30(2):428–429. doi: 10.1016/0006-3002(58)90071-4. [DOI] [PubMed] [Google Scholar]
  9. Cohen S. S., Flaks J. G., Barner H. D., Loeb M. R., Lichtenstein J. THE MODE OF ACTION OF 5-FLUOROURACIL AND ITS DERIVATIVES. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1004–1012. doi: 10.1073/pnas.44.10.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dalal F. R., Gots J. S. Inhibition of 5,10-methylenetetrahydrofolate dehydrogenase by purine nucleotides. Biochem Biophys Res Commun. 1966 Feb 3;22(3):340–345. doi: 10.1016/0006-291x(66)90488-8. [DOI] [PubMed] [Google Scholar]
  12. Dalal F. R., Gots J. S. Purification of 5,10-methylenetetrahydrofolate dehydrogenase from Salmonella typhimurium and its inhibition by purine nucleotides. J Biol Chem. 1967 Aug 25;242(16):3636–3640. [PubMed] [Google Scholar]
  13. Dickerman H. W. The role of folate coenzymes in the initiation of protein synthesis. Ann N Y Acad Sci. 1971 Nov 30;186:70–84. doi: 10.1111/j.1749-6632.1971.tb46956.x. [DOI] [PubMed] [Google Scholar]
  14. GOTS J. S. Purine metabolism in bacteria. V. Feed-back inhibition. J Biol Chem. 1957 Sep;228(1):57–66. [PubMed] [Google Scholar]
  15. Ganguli N., Bhattacharjee S. B. Influence of chloramphenicol on thymineless death in bacteria. Biochim Biophys Acta. 1968 Dec 17;169(2):545–547. doi: 10.1016/0005-2787(68)90065-8. [DOI] [PubMed] [Google Scholar]
  16. HOROWITZ J., CHARGAFF E. Massive incorporation of 5-fluorouracil into a bacterial ribonucleic acid. Nature. 1959 Oct 17;184:1213–1215. doi: 10.1038/1841213a0. [DOI] [PubMed] [Google Scholar]
  17. Harvey R. J. Growth and initiation of protein synthesis in Escherichia coli in the presence of trimethoprim. J Bacteriol. 1973 Apr;114(1):309–322. doi: 10.1128/jb.114.1.309-322.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hitchings G. H. Species differences among dihydrofolate reductases as a basis for chemotherapy. Postgrad Med J. 1969 Nov;45(Suppl):7–10. [PubMed] [Google Scholar]
  19. KATZEN H. M., BUCHANAN J. M. ENZYMATIC SYNTHESIS OF THE METHYL GROUP OF METHIONINE. 8. REPRESSION-DEREPRESSION, PURIFICATION, AND PROPERTIES OF 5,10-METHYLENETETRAHYDROFOLATE REDUCTASE FROM ESCHERICHIA COLI. J Biol Chem. 1965 Feb;240:825–835. [PubMed] [Google Scholar]
  20. Meynell E., Datta N. The relation of resistance transfer factors to the F-factor (sex-factor) of Escherichia coli K12. Genet Res. 1966 Feb;7(1):134–140. doi: 10.1017/s0016672300009538. [DOI] [PubMed] [Google Scholar]
  21. Miovic M., Pizer L. I. Effect of trimethoprim on macromolecular synthesis in Escherichia coli. J Bacteriol. 1971 Jun;106(3):856–862. doi: 10.1128/jb.106.3.856-862.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pinney R. J., Smith J. T. Curing of an R factor Escherichia coli by trimethoprim. Antimicrob Agents Chemother. 1973 Jun;3(6):670–676. doi: 10.1128/aac.3.6.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. ROWBURY R. J., WOODS D. D. Further studies on the repression of methionine synthesis in Escherichia coli. J Gen Microbiol. 1961 Jan;24:129–144. doi: 10.1099/00221287-24-1-129. [DOI] [PubMed] [Google Scholar]
  24. STACEY K. A., SIMSON E. IMPROVED METHOD FOR THE ISOLATION OF THYMINE-REQUIRING MUTANTS OF ESCHERICHIA COLI. J Bacteriol. 1965 Aug;90:554–555. doi: 10.1128/jb.90.2.554-555.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Silber R., Mansouri A. Regulation of folate-dependent enzymes. Ann N Y Acad Sci. 1971 Nov 30;186:55–69. doi: 10.1111/j.1749-6632.1971.tb46955.x. [DOI] [PubMed] [Google Scholar]
  26. Smith J. T. Production of thymineless mutants in gram-negative bacteria (Aerobacter, Proteus). J Gen Microbiol. 1967 Apr;47(1):131–137. doi: 10.1099/00221287-47-1-131. [DOI] [PubMed] [Google Scholar]
  27. Taylor R. T., Dickerman H., Weissbach H. Control of one-carbon metabolism in a methionine-B12 auxotroph of Escherichia coli. Arch Biochem Biophys. 1966 Nov;117(2):405–412. doi: 10.1016/0003-9861(66)90429-2. [DOI] [PubMed] [Google Scholar]
  28. Then R., Angehrn P. Effects of trimethoprim on Escherichia coli under limited nutrition. Arzneimittelforschung. 1973 Mar;23(3):451–455. [PubMed] [Google Scholar]
  29. Yagil E., Rosner A. Phosphorolysis of 5-fluoro-2'-deoxyuridine in Escherichia coli and its inhibition by nucleosides. J Bacteriol. 1971 Nov;108(2):760–764. doi: 10.1128/jb.108.2.760-764.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES