Abstract
Inhibition of Escherichia coli by isonicotinic acid hydrazide (isoniazid) is a function of the initial cell concentration, concentration of antibiotic, and chemical composition of the medium. An initial concentration of 5 × 105 cells/ml in a minimal medium is inhibited by 1 mM isoniazid. The E. coli cells are protected from this inhibitory effect by a high concentration of cells in the medium. Protection is also obtained from vitamin-free Casamino Acids, methionine, or choline plus homocystine. However, nicotinic acid, nicotinamide, and pyridoxamine are not able to reverse the effect of isoniazid. Colonies arising on minimal medium supplemented with isoniazid are not due to selection of resistant mutants, because this resistance is transitory and not passed on to the daughter cells. It is hypothesized that this transitory resistance is a manifestation of the cells' ability to transfer the methyl group of methionine to either isoniazid or accumulated nicotinic acid and/or nicotinamide.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BEHRMAN E. J., STANIER R. Y. The bacterial oxidation of nicotinic acid. J Biol Chem. 1957 Oct;228(2):923–945. [PubMed] [Google Scholar]
- Bekierkunst A. Nicotinamide-adenine dinucleotide in tubercle bacilli exposed to isoniazid. Science. 1966 Apr 22;152(3721):525–526. doi: 10.1126/science.152.3721.525. [DOI] [PubMed] [Google Scholar]
- CANTONI G. L. Activation of methionine for transmethylation. J Biol Chem. 1951 Apr;189(2):745–754. [PubMed] [Google Scholar]
- CANTONI G. L. Methylation of nicotinamide with soluble enzyme system from rat liver. J Biol Chem. 1951 Mar;189(1):203–216. [PubMed] [Google Scholar]
- CHAYKIN S., DAGANI M., JOHNSON L., SAMLI M. THE FATE OF NICOTINAMIDE IN THE MOUSE. URINARY METABOLITES. J Biol Chem. 1965 Feb;240:932–938. [PubMed] [Google Scholar]
- Chandler J. L., Gholson R. K. De novo biosynthesis of nicotinamide adenine dinucleotide in Escherichia coli: excretion of quinolinic acid by mutants lacking quinolinate phosphoribosyl transferase. J Bacteriol. 1972 Jul;111(1):98–102. doi: 10.1128/jb.111.1.98-102.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellinger P. The formation of nicotinamide from nicotinic acid by the rat. Biochem J. 1948;42(2):175–181. doi: 10.1042/bj0420175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gholson R. K., Tritz G. J., Matney T. S., Andreoli A. J. Mode of nicotinamide adenine dinucleotide utilization by Escherichia coli. J Bacteriol. 1969 Sep;99(3):895–896. doi: 10.1128/jb.99.3.895-896.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greene R. C., Su C. H., Holloway C. T. S-Adenosylmethionine synthetase deficient mutants of Escherichia coli K-12 with impaired control of methionine biosynthesis. Biochem Biophys Res Commun. 1970 Mar 27;38(6):1120–1126. doi: 10.1016/0006-291x(70)90355-4. [DOI] [PubMed] [Google Scholar]
- HARARY I. Bacterial degradation of nicotinic acid. Nature. 1956 Feb 18;177(4503):328–329. doi: 10.1038/177328a0. [DOI] [PubMed] [Google Scholar]
- JOSHI J. G., HANDLER P. Biosynthesis of trigonelline. J Biol Chem. 1960 Oct;235:2981–2983. [PubMed] [Google Scholar]
- LEIFER E., ROTH L. J., HOGNESS D. S., CORSON M. H. The metabolism of radioactive nicotinic acid and nicotinamide. J Biol Chem. 1951 Jun;190(2):595–602. [PubMed] [Google Scholar]
- Lee Y. C., Gholson R. K., Raica N. Isolation and identification of two new nicotinamide metabolites. J Biol Chem. 1969 Jun 25;244(12):3277–3282. [PubMed] [Google Scholar]
- OTTESEN M., WOLLENBERGER A. Stepwise degradation of the peptides liberated in the transformation of ovalbumin to plakalbumin. Nature. 1952 Nov 8;170(4332):801–802. doi: 10.1038/170801a0. [DOI] [PubMed] [Google Scholar]
- Petrack B., Greengard P., Kalinsky H. On the relative efficacy of nicotinamide and nicotinic acid as precursors of nicotinamide adenine dinucleotide. J Biol Chem. 1966 May 25;241(10):2367–2372. [PubMed] [Google Scholar]
- ROWBURY R. J., WOODS D. D. Further studies on the repression of methionine synthesis in Escherichia coli. J Gen Microbiol. 1961 Jan;24:129–144. doi: 10.1099/00221287-24-1-129. [DOI] [PubMed] [Google Scholar]
- Rowbury R. J., Woods D. D. The regulation of cystathionine formation in Escherichia coli. J Gen Microbiol. 1966 Jan;42(1):155–163. doi: 10.1099/00221287-42-1-155. [DOI] [PubMed] [Google Scholar]
- Saxton R. E., Rocha V., Rosser R. J., Andreoli A. J., Shimoyama M., Kosaka A., Chandler J. L., Gholson R. K. A comparative study of the regulation of nicotinamide-adenine dinucleotide biosynthesis. Biochim Biophys Acta. 1968 Feb 1;156(1):77–84. doi: 10.1016/0304-4165(68)90106-2. [DOI] [PubMed] [Google Scholar]
- Smith D. A. S-amino acid metabolism and its regulation in Escherichia coli and Salmonella typhimurium. Adv Genet. 1971;16:141–165. doi: 10.1016/s0065-2660(08)60357-0. [DOI] [PubMed] [Google Scholar]
- Tritz G. J., Chandler J. L. Recognition of a gene involved in the regulation of nicotinamide adenine dinucleotide biosynthesis. J Bacteriol. 1973 Apr;114(1):128–136. doi: 10.1128/jb.114.1.128-136.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YONEDA M., ASANO N. Competitive action of isonicotinic acid hydrazide and pyridoxal in the amino acid decarboxylation of Escherichia coli. Science. 1953 Mar 13;117(3037):277–279. doi: 10.1126/science.117.3037.277. [DOI] [PubMed] [Google Scholar]
- Youatt J. A review of the action of isoniazid. Am Rev Respir Dis. 1969 May;99(5):729–749. doi: 10.1164/arrd.1969.99.5.729. [DOI] [PubMed] [Google Scholar]
