Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jan 4;91(1):133–137. doi: 10.1073/pnas.91.1.133

Expression cloning of a rat liver Na(+)-independent organic anion transporter.

E Jacquemin 1, B Hagenbuch 1, B Stieger 1, A W Wolkoff 1, P J Meier 1
PMCID: PMC42900  PMID: 8278353

Abstract

Using expression cloning in Xenopus laevis oocytes, we have isolated a cDNA encoding a rat liver organic anion-transporting polypeptide (oatp). The cloned oatp mediated Na(+)-independent uptake of sulfobromophthalein (BSP) which was Cl(-)-dependent in the presence of bovine serum albumin (BSA) at low BSP concentrations (e.g., 2 microM). Addition of increasing amounts of BSA had no effects on the maximal velocity of initial BSP uptake, but it increased the Km value from 1.5 microM (no BSA) to 24 microM (BSA/BSP molar ratio, 3.7) and 35 microM (BSA/BSP ratio, 18.4). In addition to BSP, the cloned oatp also mediated Na(+)-independent uptake of conjugated (taurocholate) and unconjugated (cholate) bile acids. Sequence analysis of the cDNA revealed an open reading frame of 2010 nucleotides coding for a protein of 670 amino acids (calculated molecular mass, 74 kDa) with four possible N-linked glycosylation sites and 10 putative transmembrane domains. Translation experiments in vitro indicated that the transporter was indeed glycosylated and that its polypeptide backbone had an apparent molecular mass of 59 kDa. Northern blot analysis with the cloned probe revealed crossreactivity with several mRNA species from rat liver, kidney, brain, lung, skeletal muscle, and proximal colon as well as from liver tissues of mouse and rabbit, but not of skate (Raja erinacea) and human.

Full text

PDF
133

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berk P. D., Potter B. J., Stremmel W. Role of plasma membrane ligand-binding proteins in the hepatocellular uptake of albumin-bound organic anions. Hepatology. 1987 Jan-Feb;7(1):165–176. doi: 10.1002/hep.1840070131. [DOI] [PubMed] [Google Scholar]
  2. Boyer J. L., Hagenbuch B., Ananthanarayanan M., Suchy F., Stieger B., Meier P. J. Phylogenic and ontogenic expression of hepatocellular bile acid transport. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):435–438. doi: 10.1073/pnas.90.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Frimmer M., Ziegler K. The transport of bile acids in liver cells. Biochim Biophys Acta. 1988 Feb 24;947(1):75–99. doi: 10.1016/0304-4157(88)90020-2. [DOI] [PubMed] [Google Scholar]
  4. Goeser T., Nakata R., Braly L. F., Sosiak A., Campbell C. G., Dermietzel R., Novikoff P. M., Stockert R. J., Burk R. D., Wolkoff A. W. The rat hepatocyte plasma membrane organic anion binding protein is immunologically related to the mitochondrial F1 adenosine triphosphatase beta-subunit. J Clin Invest. 1990 Jul;86(1):220–227. doi: 10.1172/JCI114687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hagenbuch B., Stieger B., Foguet M., Lübbert H., Meier P. J. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10629–10633. doi: 10.1073/pnas.88.23.10629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hakes D. J., Berezney R. Molecular cloning of matrin F/G: A DNA binding protein of the nuclear matrix that contains putative zinc finger motifs. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6186–6190. doi: 10.1073/pnas.88.14.6186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jacquemin E., Hagenbuch B., Stieger B., Wolkoff A. W., Meier P. J. Expression of the hepatocellular chloride-dependent sulfobromophthalein uptake system in Xenopus laevis oocytes. J Clin Invest. 1991 Dec;88(6):2146–2149. doi: 10.1172/JCI115546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Klein P., Kanehisa M., DeLisi C. The detection and classification of membrane-spanning proteins. Biochim Biophys Acta. 1985 May 28;815(3):468–476. doi: 10.1016/0005-2736(85)90375-x. [DOI] [PubMed] [Google Scholar]
  9. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kurisu H., Nilprabhassorn P., Wolkoff A. W. Preparation of [35S]sulfobromophthalein of high specific activity. Anal Biochem. 1989 May 15;179(1):72–74. doi: 10.1016/0003-2697(89)90202-9. [DOI] [PubMed] [Google Scholar]
  11. McCormick M. Sib selection. Methods Enzymol. 1987;151:445–449. doi: 10.1016/s0076-6879(87)51036-9. [DOI] [PubMed] [Google Scholar]
  12. Min A. D., Johansen K. L., Campbell C. G., Wolkoff A. W. Role of chloride and intracellular pH on the activity of the rat hepatocyte organic anion transporter. J Clin Invest. 1991 May;87(5):1496–1502. doi: 10.1172/JCI115159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tiribelli C., Lunazzi G. C., Sottocasa G. L. Biochemical and molecular aspects of the hepatic uptake of organic anions. Biochim Biophys Acta. 1990 Oct 8;1031(3):261–275. doi: 10.1016/0304-4157(90)90012-2. [DOI] [PubMed] [Google Scholar]
  14. Wolkoff A. W., Chung C. T. Identification, purification, and partial characterization of an organic anion binding protein from rat liver cell plasma membrane. J Clin Invest. 1980 May;65(5):1152–1161. doi: 10.1172/JCI109770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wolkoff A. W., Samuelson A. C., Johansen K. L., Nakata R., Withers D. M., Sosiak A. Influence of Cl- on organic anion transport in short-term cultured rat hepatocytes and isolated perfused rat liver. J Clin Invest. 1987 Apr;79(4):1259–1268. doi: 10.1172/JCI112946. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES