Abstract
Puromycin-induced polysome degradation has been shown to require G factor, guanosine 5′-triphosphate, and the presence of a ribosome release factor (Hirashima and Kaji, 1972, 1973). Tetracycline, which does not inhibit formation of peptidyl-puromycin (Gottesman, 1967; Sarkar and Thach, 1968) nor the guanosine 5′-triphosphate hydrolysis mediated by elongation factor Tu (Ono et al., 1969), inhibits polysome degradation. The tetracycline inhibition requires Mg2+ at concentrations above 8 mM, which are inhibitory to protein synthesis in vitro. At concentrations of Mg2+ below 8 mM, polysome degradation is insensitive to tetracycline, but not to fusidic acid. Addition of spermidine, but not of other polyamines, enables the tetracycline inhibition to occur at concentrations of Mg2+ as low as 2 mM. The inhibition by tetracycline and by fusidic acid suggests that ribosome movement may be essential for the function of ribosome release factor, or that these antibiotics may directly affect its action.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bodley J. W., Zieve F. J. On the specificity of the two ribosomal binding sites: studies with tetracycline. Biochem Biophys Res Commun. 1969 Aug 7;36(3):463–468. doi: 10.1016/0006-291x(69)90587-7. [DOI] [PubMed] [Google Scholar]
- COHEN S. S., LICHTENSTEIN J. Polyamines and ribosome structure. J Biol Chem. 1960 Jul;235:2112–2116. [PubMed] [Google Scholar]
- Godson G. N., Sinsheimer R. L. Use of Brij lysis as a general method to prepare polyribosomes from Escherichia coli. Biochim Biophys Acta. 1967 Dec 19;149(2):489–495. doi: 10.1016/0005-2787(67)90176-1. [DOI] [PubMed] [Google Scholar]
- Gottesman M. E. Reaction of ribosome-bound peptidyl transfer ribonucleic acid with aminoacyl transfer ribonucleic acid or puromycin. J Biol Chem. 1967 Dec 10;242(23):5564–5571. [PubMed] [Google Scholar]
- Haselkorn R., Rothman-Denes L. B. Protein synthesis. Annu Rev Biochem. 1973;42:397–438. doi: 10.1146/annurev.bi.42.070173.002145. [DOI] [PubMed] [Google Scholar]
- Hirashima A., Kaji A. Factor-dependent release of ribosomes from messenger RNA. Requirement for two heat-stable factors. J Mol Biol. 1972 Mar 14;65(1):43–58. doi: 10.1016/0022-2836(72)90490-1. [DOI] [PubMed] [Google Scholar]
- Hirashima A., Kaji A. Purification and properties of ribosome-releasing factor. Biochemistry. 1972 Oct 24;11(22):4037–4044. doi: 10.1021/bi00772a005. [DOI] [PubMed] [Google Scholar]
- Hirashima A., Kaji A. Role of elongation factor G and a protein factor on the release of ribosomes from messenger ribonucleic acid. J Biol Chem. 1973 Nov 10;248(21):7580–7587. [PubMed] [Google Scholar]
- Huang M. T., Grollman A. P. Pyrocatechol violet: an inhibitor of initiation of protein synthesis. Biochem Biophys Res Commun. 1973 Aug 21;53(4):1049–1059. doi: 10.1016/0006-291x(73)90571-8. [DOI] [PubMed] [Google Scholar]
- Kullnig R. K., Rosano C. L., Coulter M. E., Hurwitz C. Configuration of 2-hydroxyputrescine. J Biol Chem. 1973 Apr 10;248(7):2487–2488. [PubMed] [Google Scholar]
- Ono Y., Skoultchi A., Waterson J., Lengyel P. Peptide chain elongation: GTP cleavage catalysed by factors binding aminoacyl-transfer RNA to the ribosome. Nature. 1969 May 17;222(5194):645–648. doi: 10.1038/222645a0. [DOI] [PubMed] [Google Scholar]
- Pestka S., Hintikka H. Studies on the formation of ribonucleic acid-ribosome complexes. XVI. Effect of ribosomal translocation inhibitors on polyribosomes. J Biol Chem. 1971 Dec 25;246(24):7723–7730. [PubMed] [Google Scholar]
- Pestka S. Inhibitors of ribosome functions. Annu Rev Microbiol. 1971;25:487–562. doi: 10.1146/annurev.mi.25.100171.002415. [DOI] [PubMed] [Google Scholar]
- Pestka S. Peptidyl-puromycin synthesis on polyribosomes from Escherichia coli. Proc Natl Acad Sci U S A. 1972 Mar;69(3):624–628. doi: 10.1073/pnas.69.3.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ron E. Z., Kohler R. E., Davis B. D. Increased stability of polysomes in an Escherichia coli mutant with relaxed control of RNA synthesis. Proc Natl Acad Sci U S A. 1966 Aug;56(2):471–475. doi: 10.1073/pnas.56.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarkar S., Thach R. E. Inhibition of formylmethionyl-transfer RNA binding to ribosomes by tetracycline. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1479–1486. doi: 10.1073/pnas.60.4.1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tai P. C., Wallace B. J., Davis B. D. Actions of aurintricarboxylate, kasugamycin, and pactamycin on Escherichia coli polysomes. Biochemistry. 1973 Feb;12(4):616–620. doi: 10.1021/bi00728a008. [DOI] [PubMed] [Google Scholar]
- Takeda Y. Polyamines and protein synthesis. 3. The effect of polyamines on the binding of phenylalanyl transfer RNA to ribosomes. Biochim Biophys Acta. 1969 May 20;182(1):258–261. doi: 10.1016/0005-2787(69)90544-9. [DOI] [PubMed] [Google Scholar]
- Takeda Y. Polyamines and protein synthesis. II. The shift in optimal concentration of Mg2+ by polyamines in the MS2 phage RNA-directed polypeptide synthesis. Biochim Biophys Acta. 1969 Mar 18;179(1):232–234. doi: 10.1016/0005-2787(69)90140-3. [DOI] [PubMed] [Google Scholar]
- Tanaka N., Kinoshita T., Masukawa H. Mechanism of protein synthesis inhibition by fusidic acid and related antibiotics. Biochem Biophys Res Commun. 1968 Feb 15;30(3):278–283. doi: 10.1016/0006-291x(68)90447-6. [DOI] [PubMed] [Google Scholar]
- White J. P., Cantor C. R. Role of magnesium in the binding of tetracycline to Escherichia coli ribosomes. J Mol Biol. 1971 May 28;58(1):397–400. doi: 10.1016/0022-2836(71)90255-5. [DOI] [PubMed] [Google Scholar]
