Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1975 May;7(5):676–681. doi: 10.1128/aac.7.5.676

Genetic Analysis of Drug Resistance in Neisseria gonorrhoeae: Identification and Linkage Relationships of Loci Controlling Drug Resistance

Thomas W Maier 1, Leonard Zubrzycki 1, Marie B Coyle 1,1
PMCID: PMC429202  PMID: 807159

Abstract

The genetic basis of multiple drug resistance of Neisseria gonorrhoeae was investigated by the technique of transformation. Six different genetic loci were characterized by the type and amount of antibiotic resistance they controlled, and also by the degree of linkage to other resistance markers. A streptomycin resistance locus is linked to separate loci determining resistance to tetracycline, chloramphenicol, and erythromycin. A multiple resistance locus was identified. This genetic locus determines resistance to a variety of antibacterial agents. Lastly, a locus determining resistance to the penicillins was found which is unlinked to any other resistance locus.

Full text

PDF
676

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOEVRE K. STUDIES ON TRANSFORMATION IN MORAXELLA AND ORGANISMS ASSUMED TO BE RELATED TO MORAXELLA. 1. A METHOD FOR QUANTITATIVE TRANSFORMATION IN MORAXELLA AND NEISSERIA, WITH STREPLOMYCIN RESISTANCE AS THE GENETIC MARKER. Acta Pathol Microbiol Scand. 1964;61:457–473. doi: 10.1111/apm.1964.61.3.457. [DOI] [PubMed] [Google Scholar]
  2. Boman H. G., Nordström K., Normark S. Penicillin resistance in Escherichia coli K12: synergism between penicillinases and a barrier in the outer part of the envelope. Ann N Y Acad Sci. 1974 May 10;235(0):569–586. doi: 10.1111/j.1749-6632.1974.tb43291.x. [DOI] [PubMed] [Google Scholar]
  3. Breckenridge L., Gorini L. Genetic analysis of streptomycin resistance in Escherichia coli. Genetics. 1970 May;65(1):9–25. doi: 10.1093/genetics/65.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Engelkirk P. G., Schoenhard D. E. Physical evidence of a plasmid in Neisseria gonorrhoeae. J Infect Dis. 1973 Feb;127(2):197–200. doi: 10.1093/infdis/127.2.197. [DOI] [PubMed] [Google Scholar]
  5. Eriksson-Grennberg K. R., Nordström K., Englund P. Resistance of Escherichia coli to penicillins. IX. Genetics and physiology of class II ampicillin-resistant mutants that are galactose negative or sensitive to bacteriophage C21, or both. J Bacteriol. 1971 Dec;108(3):1210–1223. doi: 10.1128/jb.108.3.1210-1223.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GOODGAL S. H., HERRIOTT R. M. Studies on transformations of Hemophilus influenzae. II. The molecular weight of transforming DNA by sedimentation and diffusion measurements. J Gen Physiol. 1961 Jul;44:1229–1239. doi: 10.1085/jgp.44.6.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GOODGAL S. H. Studies on transformations of Hemophilus influenzae. IV. Linked and unlinked transformations. J Gen Physiol. 1961 Nov;45:205–228. doi: 10.1085/jgp.45.2.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harford N., Sueoka N. Chromosomal location of antibiotic resistance markers in Bacillus subtilis. J Mol Biol. 1970 Jul 28;51(2):267–286. doi: 10.1016/0022-2836(70)90142-7. [DOI] [PubMed] [Google Scholar]
  9. Johnson D. W., Kvale P. A., Afable V. L., Stewart S. D., Halverson C. W., Holmes K. K. Single-dose antibiotic treatment of asymptomatic gonorrhea in hospitalized women. N Engl J Med. 1970 Jul 2;283(1):1–6. doi: 10.1056/NEJM197007022830101. [DOI] [PubMed] [Google Scholar]
  10. Maier T. W., Beilstein H. R., Zubrzycki L. Multiple antibiotic resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1974 Jul;6(1):22–28. doi: 10.1128/aac.6.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maness M. J., Sparling P. F. Multiple antibiotic resistance due to a single mutation in Neisseria gonorrhoeae. J Infect Dis. 1973 Sep;128(3):321–330. doi: 10.1093/infdis/128.3.321. [DOI] [PubMed] [Google Scholar]
  12. Michalka J., Goodgal S. H. Genetic and physical map of the chromosome of Hemophilus influenzae. J Mol Biol. 1969 Oct 28;45(2):407–421. doi: 10.1016/0022-2836(69)90115-6. [DOI] [PubMed] [Google Scholar]
  13. Pestka S. Inhibitors of ribosome functions. Annu Rev Microbiol. 1971;25:487–562. doi: 10.1146/annurev.mi.25.100171.002415. [DOI] [PubMed] [Google Scholar]
  14. Reyn A., Bentzon M. W. Relationships between the sensitivities in vitro of Neisseria gonorrhoeae to spiramycin, penicillin, streptomycin, tetracycline, and erythromycin. Br J Vener Dis. 1969 Sep;45(3):223–227. doi: 10.1136/sti.45.3.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sparling P. F. Antibiotic resistance in Neisseria gonorrhoeae. Med Clin North Am. 1972 Sep;56(5):1133–1144. doi: 10.1016/s0025-7125(16)32339-2. [DOI] [PubMed] [Google Scholar]
  16. Sparling P. F. Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J Bacteriol. 1966 Nov;92(5):1364–1371. doi: 10.1128/jb.92.5.1364-1371.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Strominger J. L. Penicillin-sensitive enzymatic reactions in bacterial cell wall synthesis. Harvey Lect. 1968 1969;64:179–213. [PubMed] [Google Scholar]
  18. Traub P., Nomura M. Streptomycin resistance mutation in Escherichia coli: altered ribosomal protein. Science. 1968 Apr 12;160(3824):198–199. doi: 10.1126/science.160.3824.198. [DOI] [PubMed] [Google Scholar]
  19. Willcox R. R. A survey of problems in the antibiotic treatment of gonorrhoea. With special reference to South-East Asia. Br J Vener Dis. 1970 Jun;46(3):217–242. doi: 10.1136/sti.46.3.217. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES