Abstract
Nicotinic acid hydroxylase from Clostridium barkeri contains selenium in an unidentified form that is dissociated as a low molecular weight compound upon denaturation of the enzyme. Other cofactors of this enzyme are molybdopterin, FAD, and iron-sulfur clusters. In the current study, we show that the enzyme, as isolated, exhibits a stable Mo(V) electron paramagnetic resonance (EPR) signal ("resting" signal) and that this signal is correlated with the selenium content and nicotinate hydroxylase activity of the enzyme. Substitution of 77Se for normal selenium isotope abundance results in splitting of the Mo(V) EPR signal of the native protein without affecting the iron signals of the FeS clusters. The Mo(V) EPR signal and nicotinic acid hydroxylase activity of enzyme isolated from cells grown in selenium-deficient medium are barely detectable. In contrast, the EPR signals of the FeS clusters, the electronic absorption spectrum, the NADPH oxidase activity, and the chromatographic behavior are changed little and are typical of active selenium-containing enzyme. An EPR signal indicative of the presence of molybdenum in the selenium-deficient enzyme also is exhibited. From these results, we conclude that a dissociable selenium moiety is coordinated directly with molybdenum in the molybdopterin cofactor and, moreover, this selenium is essential for nicotinic acid hydroxylase activity.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Axley M. J., Böck A., Stadtman T. C. Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8450–8454. doi: 10.1073/pnas.88.19.8450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Axley M. J., Grahame D. A. Kinetics for formate dehydrogenase of Escherichia coli formate-hydrogenlyase. J Biol Chem. 1991 Jul 25;266(21):13731–13736. [PubMed] [Google Scholar]
- Axley M. J., Grahame D. A., Stadtman T. C. Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component. J Biol Chem. 1990 Oct 25;265(30):18213–18218. [PubMed] [Google Scholar]
- Blum H., Salerno J. C., Rich P. R., Ohnishi T. Exchange integral for a variety of tetranuclear ferredoxins. Biochim Biophys Acta. 1979 Oct 10;548(1):139–146. doi: 10.1016/0005-2728(79)90194-4. [DOI] [PubMed] [Google Scholar]
- Bray R. C., George G. N. Electron-paramagnetic-resonance studies using pre-steady-state kinetics and substitution with stable isotopes on the mechanism of action of molybdoenzymes. Biochem Soc Trans. 1985 Jun;13(3):560–567. doi: 10.1042/bst0130560. [DOI] [PubMed] [Google Scholar]
- Bray R. C., George G. N., Lange R., Meyer O. Studies by e.p.r. spectroscopy of carbon monoxide oxidases from Pseudomonas carboxydovorans and Pseudomonas carboxydohydrogena. Biochem J. 1983 Jun 1;211(3):687–694. doi: 10.1042/bj2110687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bray R. C. The inorganic biochemistry of molybdoenzymes. Q Rev Biophys. 1988 Aug;21(3):299–329. doi: 10.1017/s0033583500004479. [DOI] [PubMed] [Google Scholar]
- Böck A., Stadtman T. C. Selenocysteine, a highly specific component of certain enzymes, is incorporated by a UGA-directed co-translational mechanism. Biofactors. 1988 Oct;1(3):245–250. [PubMed] [Google Scholar]
- Dalton H., Lowe D. J., Pawlik T., Bray R. C. Studies by electron-paramagnetic-resonance spectroscopy on the mechanism of action of xanthine dehydrogenase from Veillonella alcalescens. Biochem J. 1976 Feb 1;153(2):287–295. doi: 10.1042/bj1530287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dilworth G. L. Occurrence of molybdenum in the nicotinic acid hydroxylase from Clostridium barkeri. Arch Biochem Biophys. 1983 Mar;221(2):565–569. doi: 10.1016/0003-9861(83)90176-5. [DOI] [PubMed] [Google Scholar]
- Dilworth G. L. Properties of the selenium-containing moiety of nicotinic acid hydroxylase from Clostridium barkeri. Arch Biochem Biophys. 1982 Nov;219(1):30–38. doi: 10.1016/0003-9861(82)90130-8. [DOI] [PubMed] [Google Scholar]
- Gutteridge S., Bray R. C. Oxygen-17 splitting of the very rapid molybdenum(V) e.p.r. signal from xanthine oxidase. Rate of exchange with water of the coupled oxygen atom. Biochem J. 1980 Sep 1;189(3):615–623. doi: 10.1042/bj1890615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holcenberg J. S., Stadtman E. R. Nicotinic acid metabolism. 3. Purification and properties of a nicotinic acid hydroxylase. J Biol Chem. 1969 Mar 10;244(5):1194–1203. [PubMed] [Google Scholar]
- Meyer O., Rajagopalan K. V. Selenite binding to carbon monoxide oxidase from Pseudomonas carboxydovorans. Selenium binds covalently to the protein and activates specifically the CO----methylene blue reaction. J Biol Chem. 1984 May 10;259(9):5612–5617. [PubMed] [Google Scholar]
- Orme-Johnson W. H., Hansen R. E., Beinert H., Tsibris J. C., Bartholomaus R. C., Gunsalus I. C. On the sulfur components of iron-sulfur proteins. I. The number of acid-labile sulfur groups sharing an unpaired electron with iron. Proc Natl Acad Sci U S A. 1968 Jun;60(2):368–372. doi: 10.1073/pnas.60.2.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PASTAN I., TSAI L., STADTMAN E. R. NICOTINIC ACID METABOLISM. I. DISTRIBUTION OF ISOTOPE IN FERMENTATION PRODUCTS OF LABELLED NICOTINIC ACID. J Biol Chem. 1964 Mar;239:902–906. [PubMed] [Google Scholar]
- Rupp H., Rao K. K., Hall D. O., Cammack R. Electron spin relaxation of iron-sulphur proteins studied by microwave power saturation. Biochim Biophys Acta. 1978 Dec 20;537(2):255–260. doi: 10.1016/0005-2795(78)90509-3. [DOI] [PubMed] [Google Scholar]
- Stadtman T. C. Biosynthesis and function of selenocysteine-containing enzymes. J Biol Chem. 1991 Sep 5;266(25):16257–16260. [PubMed] [Google Scholar]
- Stadtman T. C., Davis J. N., Ching W. M., Zinoni F., Böck A. Amino acid sequence analysis of Escherichia coli formate dehydrogenase (FDHH) confirms that TGA in the gene encodes selenocysteine in the gene product. Biofactors. 1991 Jan;3(1):21–27. [PubMed] [Google Scholar]
- Stadtman T. C. Selenium biochemistry. Annu Rev Biochem. 1990;59:111–127. doi: 10.1146/annurev.bi.59.070190.000551. [DOI] [PubMed] [Google Scholar]
- Wagner R., Andreesen J. R. Selenium requirement for active xanthine dehydrogenase from Clostridium acidiurici and Clostridium cylindrosporum. Arch Microbiol. 1979 Jun;121(3):255–260. doi: 10.1007/BF00425064. [DOI] [PubMed] [Google Scholar]
- Wahl R. C., Warner C. K., Finnerty V., Rajagopalan K. V. Drosophila melanogaster ma-l mutants are defective in the sulfuration of desulfo Mo hydroxylases. J Biol Chem. 1982 Apr 10;257(7):3958–3962. [PubMed] [Google Scholar]
- Wootton J. C., Nicolson R. E., Cock J. M., Walters D. E., Burke J. F., Doyle W. A., Bray R. C. Enzymes depending on the pterin molybdenum cofactor: sequence families, spectroscopic properties of molybdenum and possible cofactor-binding domains. Biochim Biophys Acta. 1991 Mar 29;1057(2):157–185. doi: 10.1016/s0005-2728(05)80100-8. [DOI] [PubMed] [Google Scholar]