Abstract
Actinomycins normally contain N-methyl-l-valine and either d-valine, d-alloisoleucine or both amino acids in the molecule. During antibiotic formation in a medium supplemented with one of the four isoleucine stereoisomers, Streptomyces parvulus and S. chrysomallus form complex actinomycin mixtures (C1, C2, C3, E1, and E2-like compounds). Although chromatographic techniques suggested that single homogeneous components had been isolated, subsequent studies indicated that such chromatographic fractions probably consisted of multiple isomers of actinomycin. Amino acid analyses revealed the presence of N-methylvaline and/or N-methylalloisoleucine and, in addition, d-isoleucine, d-valine, and d-alloisoleucine were frequently found in a given fraction.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Audhya T. K., Russell D. W. Natural enniatin A, a mixture of optical isomers containing both erythro- and threo-N-methyl-L-isoleucine residues. J Chem Soc Perkin 1. 1974;7:743–746. doi: 10.1039/p19740000743. [DOI] [PubMed] [Google Scholar]
- Bodanszky M., Perlman D. Origin of D-amino-acids in microbial peptides: rule of alpha-epimerization. Nature. 1968 Apr 20;218(5138):291–292. doi: 10.1038/218291a0. [DOI] [PubMed] [Google Scholar]
- Fujikawa K., Sakamoto Y., Suzuki T., Kurahashi K. Biosynthesis of tyrocidine by a cell-free enzyme system of Bacillus brevis ATCC 8185. II. Amino acid substitution in tyrocidine. Biochim Biophys Acta. 1968 Dec 17;169(2):520–533. doi: 10.1016/0005-2787(68)90060-9. [DOI] [PubMed] [Google Scholar]
- Hall M. J., Handford B. O., Hassall C. H., Phillips A. S., Rees A. V. Bromomonamycins, unnatural analogues of the monamycin cyclodepsipeptide antibiotics: production, isolation, and biological activity. Antimicrob Agents Chemother. 1973 Mar;3(3):380–383. doi: 10.1128/aac.3.3.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hook D. J., Vining L. C. Biosynthetic precursors of etamycin, a peptidolactone antibiotic from Streptomyces griseoviridus. Can J Biochem. 1973 Dec;51(12):1630–1637. doi: 10.1139/o73-219. [DOI] [PubMed] [Google Scholar]
- KATZ E., GOSS W. A. Controlled biosynthesis of actinomycin with sarcosine. Biochem J. 1959 Nov;73:458–465. doi: 10.1042/bj0730458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATZ E. Influence of valine, isoleucine, and related compounds on actinomycin synthesis. J Biol Chem. 1960 Apr;235:1090–1094. [PubMed] [Google Scholar]
- KATZ E., PIENTA P., SIVAK A. The role of nutrition in the synthesis of actinomycin. Appl Microbiol. 1958 Jul;6(4):236–241. doi: 10.1128/am.6.4.236-241.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATZ E., WALDRON C. R., MELONI M. L. Role of valine and isoleucine as regulators of actinomycin peptide formation by Streptomyces chrysomallus. J Bacteriol. 1961 Oct;82:600–608. doi: 10.1128/jb.82.4.600-608.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATZ E., WEISSBACH H. Incorporation of C14-labeled amino acids into actinomycin and protein by Streptomyces antibioticus. J Biol Chem. 1963 Feb;238:666–675. [PubMed] [Google Scholar]
- Katz E. Biosynthesis of polypeptide antibiotics. Pure Appl Chem. 1971;28(4):551–570. doi: 10.1351/pac197128040551. [DOI] [PubMed] [Google Scholar]
- Katz E. Controlled biosynthesis of actinomycins. Cancer Chemother Rep. 1974 Jan-Feb;58(1):83–91. [PubMed] [Google Scholar]
- Katz E., Kawai Y., Jun'ichi S. Configuration of the N-methylisoleucine in the actinomycins. Biochem Biophys Res Commun. 1971 Jun 4;43(5):1035–1039. doi: 10.1016/0006-291x(71)90566-3. [DOI] [PubMed] [Google Scholar]
- Kurahashi K., Yamada M., Mori K., Fujikawa K., Kambe M., Imae Y., Sato E., Takahashi H., Sakamoto Y. Biosynthesis of cyclic oligopeptide. Cold Spring Harb Symp Quant Biol. 1969;34:815–826. doi: 10.1101/sqb.1969.034.01.093. [DOI] [PubMed] [Google Scholar]
- Lipmann F. Attempts to map a process evolution of peptide biosynthesis. Science. 1971 Sep 3;173(4000):875–884. doi: 10.1126/science.173.4000.875. [DOI] [PubMed] [Google Scholar]
- Lipmann F., Gevers W., Kleinkauf H., Roskoski R., Jr Polypeptide synthesis on protein templates: the enzymatic synthesis of gramicidin S and tyrocidine. Adv Enzymol Relat Areas Mol Biol. 1971;35:1–34. doi: 10.1002/9780470122808.ch1. [DOI] [PubMed] [Google Scholar]
- MACH B., TATUM E. L. ENVIRONMENTAL CONTROL OF AMINO ACID SUBSTITUTIONS IN THE BIOSYNTHESIS OF THE ANTIBIOTIC POLYPEPTIDE TYROCIDINE. Proc Natl Acad Sci U S A. 1964 Oct;52:876–884. doi: 10.1073/pnas.52.4.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MEISTER A. Utilization and transamination of the stereoisomers and keto analogues of isoleucine. J Biol Chem. 1952 Apr;195(2):813–826. [PubMed] [Google Scholar]
- OKUDA K., EDWARDS G. C., WINNICK T. Biosynthesis of gramicidin and tryocidine in the Dubos strain of Bacillus brevis. I. Experiments with growing cultures. J Bacteriol. 1963 Feb;85:329–338. doi: 10.1128/jb.85.2.329-338.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okotore R. O., Russell D. W. Evidence for biosynthetical equivalence of the epimeric isoleucine residues in angolide. Can J Biochem. 1972 Apr;50(4):428–439. doi: 10.1139/o72-058. [DOI] [PubMed] [Google Scholar]
- Russell D. W. Biosynthetical non-equivalence of the D- and L-valine residues in sporidesmolide I. Biochim Biophys Acta. 1971 Feb 28;261(2):469–474. doi: 10.1016/0304-4165(72)90071-2. [DOI] [PubMed] [Google Scholar]
- Russell D. W. Effects of stereoisomeric isoleucines on sporidesmolide biosynthesis by Pithomyces chartarum. J Gen Microbiol. 1967 Jun;47(3):335–346. doi: 10.1099/00221287-47-3-335. [DOI] [PubMed] [Google Scholar]
- Ruttenberg M. A., Mach B. Studies on amino acid substitution in the biosynthesis of the antibiotic polypeptide tyrocidine. Biochemistry. 1966 Sep;5(9):2864–2869. doi: 10.1021/bi00873a013. [DOI] [PubMed] [Google Scholar]
- Stoll E., Frøyshov Ø, Holm H., Zimmer T. L., Laland S. G. On the mechanism of gramicidin S formation from intermediate peptides. FEBS Lett. 1970 Dec 18;11(5):348–352. doi: 10.1016/0014-5793(70)80566-x. [DOI] [PubMed] [Google Scholar]
- Umezawa H. Natural and artificial bleomycins: chemistry and antitumor activities. Pure Appl Chem. 1971;28(4):665–680. doi: 10.1351/pac197128040665. [DOI] [PubMed] [Google Scholar]
- WINNICK R. E., WINNICK T. Biosynthesis of gramicidin S. II. Incorporation experiments with labeled amino acid analogs, and the amino acid activation process. Biochim Biophys Acta. 1961 Nov 11;53:461–468. doi: 10.1016/0006-3002(61)90203-7. [DOI] [PubMed] [Google Scholar]
- Yajima T., Grigg M. A., Katz E. Biosynthesis of antibiotic peptides with isoleucine stereoisomers. Arch Biochem Biophys. 1972 Aug;151(2):565–575. doi: 10.1016/0003-9861(72)90534-6. [DOI] [PubMed] [Google Scholar]
- Yoshida T., Katagiri K. Influence of isoleucine upon quinomycin biosynthesis by Streptomyces sp. 732. J Bacteriol. 1967 Apr;93(4):1327–1331. doi: 10.1128/jb.93.4.1327-1331.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
