Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1975 Jul;8(1):1–4. doi: 10.1128/aac.8.1.1

Inhibition of Ribosomal A Site Functions by Sporangiomycin and Micrococcin

Eric Cundliffe 1, Peter D Dixon 1
PMCID: PMC429249  PMID: 809000

Abstract

Sporangiomycin and micrococcin inhibit the binding of aminoacyl-transfer ribonucleic acid into the ribosomal A site in intact bacterial protoplasts. They also prevent the assembly of [ribosome-elongation factor G-guanine nucleotide] complexes in vitro and compete with [35S]thiostrepton for ribosomal binding sites. We conclude that micrococcin and sporangiomycin block the ribosomal A site in the vicinity of the complex guanosine triphosphatase center and so resemble thiostrepton in their modes of action.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burns D. J., Cundliffe E. Bacterial-protein synthesis. A novel system for studying antibiotic action in vivo. Eur J Biochem. 1973 Sep 3;37(3):570–574. doi: 10.1111/j.1432-1033.1973.tb03020.x. [DOI] [PubMed] [Google Scholar]
  2. Cabrer B., Vázquez D., Modolell J. Inhibition by elongation factor EF G of aminoacyl-tRNA binding to ribosomes. Proc Natl Acad Sci U S A. 1972 Mar;69(3):733–736. doi: 10.1073/pnas.69.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cannon Michael, Burns Kay. Modes of action of erythromycin and thiostrepton as inhibitors of protein synthesis. FEBS Lett. 1971 Oct 15;18(1):1–5. doi: 10.1016/0014-5793(71)80392-7. [DOI] [PubMed] [Google Scholar]
  4. Celma M. L., Vazquez D., Modolell J. Failure of fusidic acid and siomycin to block ribosomes in the pretranslocated state. Biochem Biophys Res Commun. 1972 Sep 5;48(5):1240–1246. doi: 10.1016/0006-291x(72)90844-3. [DOI] [PubMed] [Google Scholar]
  5. Cundliffe E., McQuillen K. Bacterial protein synthesis: the effects of antibiotics. J Mol Biol. 1967 Nov 28;30(1):137–146. doi: 10.1016/0022-2836(67)90249-5. [DOI] [PubMed] [Google Scholar]
  6. Cundliffe E. The mode of action of fusidic acid. Biochem Biophys Res Commun. 1972 Mar 10;46(5):1794–1801. doi: 10.1016/0006-291x(72)90053-8. [DOI] [PubMed] [Google Scholar]
  7. Cundliffe E. The mode of action of thiostreption in vivo. Biochem Biophys Res Commun. 1971 Aug 20;44(4):912–917. doi: 10.1016/0006-291x(71)90798-4. [DOI] [PubMed] [Google Scholar]
  8. Dixon P. G., Beven J. E., Cundliffe E. Properties of the ribosomes of antibiotic producers: effects thiostrepton and micrococcin on the organisms which produce them. Antimicrob Agents Chemother. 1975 Jun;7(6):850–855. doi: 10.1128/aac.7.6.850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldthwaite C., Smith I. Physiological characterization of antibiotic resistant mutants of Bacillus subtilis. Mol Gen Genet. 1972;114(3):190–204. doi: 10.1007/BF01788888. [DOI] [PubMed] [Google Scholar]
  10. Kinoshita T., Liou Y., Tanaka N. Inhibition by thiopeptin of ribosomal functions associated with T and G factors. Biochem Biophys Res Commun. 1971 Aug 20;44(4):859–863. doi: 10.1016/0006-291x(71)90790-x. [DOI] [PubMed] [Google Scholar]
  11. Miller D. L. Elongation factors EF Tu and EF G interact at related sites on ribosomes. Proc Natl Acad Sci U S A. 1972 Mar;69(3):752–755. doi: 10.1073/pnas.69.3.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Modolell J., Cabrer B., Parmeggiani A., Vazquez D. Inhibition by siomycin and thiostrepton of both aminoacyl-tRNA and factor G binding to ribosomes. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1796–1800. doi: 10.1073/pnas.68.8.1796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Otaka T., Kaji A. Micrococcin: acceptor-site-specific inhibitor of protein synthesis. Eur J Biochem. 1974 Dec 16;50(1):101–106. doi: 10.1111/j.1432-1033.1974.tb03876.x. [DOI] [PubMed] [Google Scholar]
  14. Pestka S., Brot N. Studies on the formation of transfer ribonucleic acid-ribosome complexes. IV. Effect of antibiotics on steps of bacterial protein synthesis: some new ribosomal inhibitors of translocation. J Biol Chem. 1971 Dec 25;246(24):7715–7722. [PubMed] [Google Scholar]
  15. Pestka S. Studies on transfer ribonucleic acid-ribosome complexes. XIX. Effect of antibiotics on peptidyl puromycin synthesis on polyribosoms from Escherichia coli. J Biol Chem. 1972 Jul 25;247(14):4669–4678. [PubMed] [Google Scholar]
  16. Pirali G., Lancini G. C., Parisi B., Sala F. Interaction of sporangiomycin with the bacterial ribosome. J Antibiot (Tokyo) 1972 Oct;25(10):561–568. doi: 10.7164/antibiotics.25.561. [DOI] [PubMed] [Google Scholar]
  17. Richman N., Bodley J. W. Ribosomes cannot interact simultaneously with elongation factors EF Tu and EF G. Proc Natl Acad Sci U S A. 1972 Mar;69(3):686–689. doi: 10.1073/pnas.69.3.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Richter D. Inability of E. coli ribosomes to interact simultaneously with the bacterial elongation factors EF Tu and EF G. Biochem Biophys Res Commun. 1972 Mar 10;46(5):1850–1856. doi: 10.1016/0006-291x(72)90061-7. [DOI] [PubMed] [Google Scholar]
  19. Tiboni O., Ciferri O. Selective inhibition of the reactions catalyzed by ribosome-specific transfer factors G. FEBS Lett. 1971 Dec 1;19(2):174–179. doi: 10.1016/0014-5793(71)80507-0. [DOI] [PubMed] [Google Scholar]
  20. Vazquez D. Inhibitors of protein synthesis. FEBS Lett. 1974 Mar 23;40(0):suppl–suppl:S84. doi: 10.1016/0014-5793(74)80689-7. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES