Abstract
An early blocked sulfur amino acid auxotroph, Cephalosporium acremonium mutant 274-1 (which could be satisfied by methionine or cysteine), utilized organic sulfur compounds for cephalosporin C production in the following order of decreasing effectiveness; methionine > cystathionine > cysteine, despite the fact that cysteine is considered to be the immediate precursor of the antibiotic. When a genetic block was added to mutant 274-1 in the transsulfuration pathway from cysteine to methionine, the double mutant 11-8 (which grows on methonine but not cysteine) failed to produce cephalosporin C from cysteine even though enough methionine was added to support normal growth. Addition of the non-sulfur analogue, norleucine, resulted in antibiotic production from cysteine in the double mutant. These facts support the hypothesis that methionine stimulation of cephalosporin C production is due to a role of methionine other than that of sulfur donation.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Caltrider P. G., Niss H. F. Role of methionine in cephalosporin synthesis. Appl Microbiol. 1966 Sep;14(5):746–753. doi: 10.1128/am.14.5.746-753.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEMAIN A. L., NEWKIRK J. F., HENDLIN D. Effect of methionine, norleucine, and lysine derivatives on cephalosporin C formation in chemically defined media. J Bacteriol. 1963 Feb;85:339–344. doi: 10.1128/jb.85.2.339-344.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Demain A. L. Biochemistry of penicillin and cephalosporin fermentations. Lloydia. 1974 Jun;37(2):147–167. [PubMed] [Google Scholar]
- Dennen D. W., Carver D. D. Sulfatase regulation and antibiotic synthesis in Cephalosporium acremonium. Can J Microbiol. 1969 Feb;15(2):175–181. doi: 10.1139/m69-029. [DOI] [PubMed] [Google Scholar]
- Drew S. W., Demain A. L. Methionine control of cephalosporin C formation. Biotechnol Bioeng. 1973 Jul;15(4):743–754. doi: 10.1002/bit.260150408. [DOI] [PubMed] [Google Scholar]
- Lemke P. A., Nash C. H. Mutations that affect antibiotic synthesis by Cephalosporium acremonium. Can J Microbiol. 1972 Feb;18(2):255–259. doi: 10.1139/m72-038. [DOI] [PubMed] [Google Scholar]
- Mudd S. H., Finkelstein J. D., Irreverre F., Laster L. Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway. J Biol Chem. 1965 Nov;240(11):4382–4392. [PubMed] [Google Scholar]
- Ott J. L., Godzeski C. W., Pavey D., Farran J. D., Horton D. R. Biosynthesis of Cephalosporin C: I. Factors Affecting the Fermentation. Appl Microbiol. 1962 Nov;10(6):515–523. doi: 10.1128/am.10.6.515-523.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]