Skip to main content
Oncoimmunology logoLink to Oncoimmunology
. 2014 Dec 10;3(9):e954929. doi: 10.4161/21624011.2014.954929

Trial Watch

Radioimmunotherapy for oncological indications

Norma Bloy 1,2,3,4,, Jonathan Pol 1,2,3,, Gwenola Manic 5, Ilio Vitale 5, Alexander Eggermont 1, Jérôme Galon 2,6,7,8, Eric Tartour 6,9,10, Laurence Zitvogel 1,11, Guido Kroemer 2,3,6,10,12,*,, Lorenzo Galluzzi 1,3,6,*,
PMCID: PMC4292758  PMID: 25941606

Abstract

During the past two decades, it has become increasingly clear that the antineoplastic effects of radiation therapy do not simply reflect the ability of X-, β- and γ-rays to damage transformed cells and directly cause their permanent proliferative arrest or demise, but also involve cancer cell-extrinsic mechanisms. Indeed, among other activities, radiotherapy has been shown to favor the establishment of tumor-specific immune responses that operate systemically, underpinning the so-called ‘out-of-field’ or ‘abscopal’ effect. Thus, ionizing rays appear to elicit immunogenic cell death, a functionally peculiar variant of apoptosis associated with the emission of a particularly immunostimulatory combination of damage-associated molecular patterns. In line with this notion, radiation therapy fosters, and thus exacerbates, the antineoplastic effects of various treatment modalities, including surgery, chemotherapy and various immunotherapeutic agents. Here, we summarize recent advances in the use of ionizing rays as a means to induce or potentiate therapeutically relevant anticancer immune responses. In addition, we present clinical trials initiated during the past 12 months to test the actual benefit of radioimmunotherapy in cancer patients.

Keywords: CTLA4, dendritic cells, ibritumomab tiuxetan, immunostimulatory cytokines, peptide-based anticancer vaccine, Toll-like receptor agonists

Abbreviations: DC, dendritic cell; EBRT, external-beam radiation therapy; EGFR, epidermal growth factor receptor; FDA, Food and Drug Administration; ICD, immunogenic cell death; IL, interleukin; mAb, monoclonal antibody; NHL, non-Hodgkin's lymphoma; TLR, Toll-like receptor

Introduction

Radiation therapy perhaps constitutes the most widely employed antineoplastic intervention of all time.1,2 Current estimates indicate that more than 50% of cancer patients will undergo radiotherapy at some point in the course of their disease.3,4 Originally conceived in the early 1900s following the groundbreaking discovery of Wilhelm Conrad Röntgen,1 the possibility of treating malignant lesions with ionizing rays has transformed into a robust clinical paradigm coincident with the huge technological advances achieved throughout the 20th century.1,2 Nowadays, ionizing irradiation is frequently administered in combination with other treatment modalities (including surgery and chemotherapy), either with a curative intent (i.e., to eradicate primary tumors or prevent disease recurrence) or as a palliative approach (i.e., to relieve the pain/discomfort provoked by tumors at particular anatomical locations).3,4 Depending on the specific case, irradiation can be administered as a neo-adjuvant intervention (to limit the esthetic/anatomical impact of the procedure and minimize the risk of recurrence), intra-operatively (granting access to neoplastic lesions with a particularly complicated anatomical localization), or as an adjuvant treatment (constituting an efficient means to prevent disease relapse).5-7

For the purpose of this discussion, radiation therapy can be broadly subdivided into 2 large categories: external-beam radiation therapy (EBRT) and internal radiotherapy.2,8 EBRT generally relies on an external source of collimated X- or γ-rays targeting neoplastic lesions across the intact skin. We have previously discussed in detail the types of EBRT most commonly employed for oncological indications.7 Internal radiotherapy can be further subdivided into 2 variants: (1) brachytherapy, which involves the seeding of small radioactive pellets within the tumor mass (interstitial brachytherapy) or in an adjacent cavity (intracavitary brachytherapy); and (2) systemic radiation therapy, consisting in the oral or intravenous administration of a radionuclide, often (but not always) coupled to a tumor-targeting monoclonal antibody (mAb).8,9 EBRT, brachytherapy and systemic radiation therapy are associated with specific advantages and drawbacks that render them particularly conducive to the treatment of specific tumors. A detailed discussion of these aspects goes beyond the scope of this Trial Watch and can be found in Refs. 2, 7 and 8

For a long time, the therapeutic potential of ionizing rays has been exclusively ascribed to their ability to mediate robust antiproliferative and cytotoxic effects as they directly damage various macromolecules (including lipids and DNA) and favor the establishment of oxidative stress (which also promotes DNA damage).10-12 The molecular damage inflicted by radiation therapy can cause: (1) a permanent proliferative arrest known as cellular senescence;13-16 (2) mitochondrial outer membrane permeabilization, de facto committing cells to die along with the massive activation of caspases;17-21 or (3) various forms of regulated necrosis, including a receptor-interacting protein kinase 3 (RIPK3)- and mixed lineage kinase domain-like (MLKL)-dependent variant commonly referred to as necroptosis,22-25 as well as poly(ADP-ribose) polymerase 1 (PARP1)- and apoptosis-inducing factor, mitochondrion-associated, 1 (AIFM1)-dependent subroutine known as parthanatos.26,27 The induction of regulated cell death by irradiation often, but not always, involves tumor protein p53 (TP53, best known as p53),28-30 and results from the activation of mitotic catastrophe, an oncosuppressive mechanism for the elimination of cells unable to complete mitosis.31,32

During the past 2 decades, it has become clear that the clinical activity of radiation therapy also involves various cell-extrinsic mechanisms. First, malignant cells exposed to ionizing irradiation die while releasing a wide panel of cytotoxic mediators, including reactive oxygen and nitrogen species,33-35 as well as several cytokines like interleukin (IL)-6,36 IL-8,37 transforming growth factor β1 (TGFβ1)38 and tumor necrosis factor α (TNFα).39 These biologically active molecules de facto promote the demise of non-irradiated neighboring cells, underpinning the ability of radiation therapy to mediate local bystander effects.10,40,41 Second, cancer cells are thought to succumb to radiation therapy by undergoing an immunogenic variant of apoptosis commonly known as immunogenic cell death (ICD).12,17,42,43 ICD is intimately linked to the emission of various damage-associated molecular patterns in a manner that is spatiotemporally compatible with the recruitment of antigen-presenting cells and the elicitation of adaptive immunity.42,44-46 Thus, irradiated cancer cells can, at least under some circumstances, prime a tumor-specific immune response that operates systemically, underpinning the long-range bystander effects of radiation therapy commonly known as “out-of-field” or “abscopal” reactions.47-52 Finally, several types of radiotherapy favor the normalization of the tumor vasculature, a process that inhibits tumor growth while facilitating the access of neoplastic lesions by chemotherapeutic agents and immune effector cells.53-55

Radiation therapy causes both acute and chronic side effects.56-59 The former, which generally resolves in a few days/weeks after interruption, generally reflect the temporary damage inflicted to highly proliferative normal tissues inevitably irradiated along with neoplastic lesions (e.g., the skin in the case of EBRT).8,60 Conversely, the latter result from the permanent damage of highly proliferating cell compartments, such as the intestinal mucosa. In addition, radiation therapy is associated with a small but quantifiable increase in the risk of developing a secondary, treatment-induced neoplasm later in life.61-63 Several strategies have been developed throughout the past 50 years to increase the therapeutic index of radiation therapy, that is, to maximize its antineoplastic activity (“radiosensitization”) while limiting its cytotoxic effects on non-transformed tissues (“radioprotection”).2,64-66 Fractionation, i.e., the delivery of radiotherapy in multiple sessions (spaced by at least 6 hours) over several weeks, is by far the most common approach to simultaneously achieve this goal.1 Moreover, several molecules have been shown to mediate bona fide “radiosensitizing” or “radioprotective” effects in preclinical models.67-82 Nonetheless, the radical scavenger amifostine (also known as Ethyol®) is the only chemical currently approved by the US Food and Drug Administration (FDA) for use as a radioprotector in cancer patients.83-85

One year ago, in the September issue of OncoImmunology, we discussed in detail the scientific grounds for the use of ionizing irradiation as a means to elicit or boost tumor-targeting immune responses in cancer patients and presented recent clinical trials investigating the actual therapeutic profile of this approach.7 In this Trial Watch, we summarize the latest developments in this promising area of clinical investigation, focusing on clinical and preclinical paradigms of radioimmunotherapy, i.e., the combinatorial administration of radiation therapy and one or more immunostimulatory interventions.

Literature Update

Since the submission of our latest Trial Watch dealing with topic (June 2013),7 the results of some 130 clinical studies evaluating the therapeutic profile of anticancer radioimmunotherapy have been published in the peer-reviewed scientific literature (source http://www.ncbi.nlm.nih.gov/pubmed).

The largest fraction of these studies investigated the safety and efficacy of potentially immunogenic chemoradiotherapy, i.e., combinatorial regimens involving EBRT or internal radiotherapy plus immunostimulatory chemotherapeutics86-90 including (but not limited to) 5-fluorouracil (a pyrimidine analog generally utilized for the therapy of head and neck carcinoma and colorectal neoplasms) and its precursors (capecitabine and S-1, both of which are currently approved by the US FDA for use in colorectal cancer patients),91-131 etoposide (a topoisomerase inhibitor currently employed against testicular tumors and small cell lung cancer),132-136 docetaxel and paclitaxel (two microtubular inhibitors of the taxane family routinely harnessed for the treatment of several carcinomas),96,97,111,115,127,134,136-153 ifosfamide and cyclophosphamide (two alkylating agents licensed by the US FDA for the therapy of various solid malignancies),154,155 gemcitabine (a nucleoside analog currently employed in patients affected by various carcinomas),109,131,150,156,157 bortezomib (a proteasomal inhibitor most commonly utilized in multiple myeloma patients),158 and various platinum derivatives (i.e., cisplatin, carboplatin and oxaliplatin, which are employed for the treatment of various carcinomas).91,92,95-104,106-108,111-113,115,116,119,121-124,134,138-146,156,157,159-161 In addition, several research groups worldwide assessed the clinical profile of EBRT in combination with naked tumor-targeting mAbs,162-174 immunostimulatory mAbs,175,176 dendritic cell (DC)-based or peptide-based anticancer vaccines,177,178 or multiple immunogenic interventions (most often a tumor-targeting mAbs plus immunostimulatory chemotherapy).179-195 Finally, a few studies evaluated the therapeutic potential of mAb-based internal radiotherapy, either employed as a stand alone intervention196-204 or combined with additional immunotherapeutic agents, most often naked tumor-targeting mAbs.158,205-208

Most clinical studies on the therapeutic activity of radioimmunotherapy published during the last 13 months enrolled patients bearing solid tumors, including subjects with glioma or glioblastoma,118,167,168,181 breast carcinoma,125,130,163 head and neck cancer,95-97,111,115,116,129,141,142,161,173,174,185,194,195 gastric, esophageal or gastroesophageal carcinoma,94,112,119-124,138,143,166,184 lung carcinoma,113,114,134,136,139,140,149,150,160,178,183 endometrial carcinoma,144-147,153 pancreatic cancer,109,110,131,156,157,169,170,186-188 colorectal or anal carcinoma,92,98-108,128,159,162,171,180,189-193,196,200,201,209-211 bladder carcinoma,126,127 cervical carcinoma,91,148,151,152,164 prostate carcinoma,137,176 and others.93,154,172,175,177,204 In addition, a few groups assessed the safety and efficacy of radiation therapy (most often internal radiotherapy) combined with immunostimulatory interventions in patients affected by various forms of lymphoma.132,133,135,155,158,165,182,197-199,202,203,205-208 Taken together, these studies corroborate the notion that both EBRT and internal radiotherapy can be combined with a wide panel of immunostimulatory agents in the absence of accrued toxicity. As exceptions to this trend, Vaklavas and colleagues found that the combination of 90Y-ibritumomab tiuxetan, a radiolabelled CD20-targeting mAb approved by the US FDA for use against non-Hodgkin lymphoma (NHL),212,213 and rituximab, a naked CD20-specific mAb currently employed for the treatment of chronic lymphocytic leukemia and NHL,214-216 correlates with an increased rate of Grade 3-4 adverse events relative to 90Y-ibritumomab tiuxetan monotherapy among NHL patients.203 Along similar lines, two independent groups reported that patients with locally advanced anal carcinoma receiving cetuximab, a naked epidermal growth factor receptor (EGFR)-targeting mAb currently licensed for the therapy of head and neck cancer and colorectal carcinoma,217-220 along with cisplatin- or 5-fluorouracil-based chemoradiotherapy display an elevated rate of severe side effects, including dermatitis, diarrhea, thrombosis/embolism, and infection.162,180 However, it remains to be determined which components of these combinatorial radioimmunotherapeutic regimens are truly responsible for such an accrued toxicity. Moreover, Olivatto and colleagues observed a high rate of pathological complete responses (95%) and locoregional control at 3-year follow-up (64.2%) among anal carcinoma patients treated with cetuximab plus chemoradiation.180 These data encourage the evaluation of EGFR-targeting agents other than cetuximab in support of cisplatin- or 5-fluorouracil-based chemoradiotherapy as a treatment for anal carcinoma. Along similar lines, the results of various other studies published in the last 13 months suggest that the combinatorial use of radiation therapy (in several of its variants) and diverse immunostimulatory agents exhibit a superior clinical profile (i.e., improved efficacy, limited incidence and severity of side effects) as compared to either therapeutic paradigm employed alone (at least in a subset of patients).91,95,96,99,103,104,107,108,111,115,116,125,126,132-135,137,138,141,143,145,147,155,157,159-161,164,168,172,179-183,185,187,192,193,198,200,203,204,206-210

Among recent translational studies focusing on radioimmunotherapy in general, we found of particular interest the work of (1) Deng and collaborators (The Ludwig Center for Metastasis Research; Chicago, IL, US), who demonstrated that the immunosuppressive receptor programmed cell death 1 (PDCD1, best known as PD-1)221,222 is upregulated in the tumor microenvironment in response to EBRT, and that the administration of a mAb targeting the PD-1 ligand CD274 (best known as PD-L1)223,224 synergize with irradiation to provoke a therapeutically relevant antitumor immune response;225 (2) Klug and colleagues (German Cancer Research Center; Heidelberg, Germany), who proved that low-dose γ-rays administered in a neoadjuvant setting stimulate the differentiation of M1 macrophages,226-229 hence promoting the normalization of the tumor vasculature and orchestrating an efficient tumor-targeting immune response;230 (3) Nam and coworkers (University of Ulsan College of Medicine; Seoul, Korea), who reported that the mechanistic target of rapamycin (MTOR) inhibitor rapamycin (which is currently approved by the US FDA for use as an immunosuppressive agent to prevent the rejection of solid organ transplants and coronary stents),231 can be employed to promote cellular senescence among radioresistant cancer cells,16,31 in spite of its ability to potently stimulate autophagy;232-234 (4) Bos et al. (Memorial Sloan-Kettering Cancer Center; New York, NY, US), who proved that the short-term ablation of CD4+CD25+FOXP3+ regulatory T cells (Tregs)235-237 significantly ameliorates the therapeutic efficacy of EBRT in a genetically-driven, autochthonous model of tumorigenesis;238 (5) Liu and collaborators (Chang Gung University; Taoyuan, Taiwan), who demonstrated that leukemia inhibitory factor (LIF), a cytokine of the IL-6 family,239,240 plays a significant role in the acquisition of radioresistance by nasopharyngeal carcinoma;241 (6) Zhou and colleagues (University of Michigan School of Dentistry; Ann Arbor, MI, US), who proved that the administration of the recombinant WNT agonist R-spondin 1 (RSPO1)242-244 combined with the transgene-driven overexpression of slit homolog 2 (SLIT2) mitigates the lethal effects of high-dose irradiation to the intestine but does not compromise its antineoplastic activity;245 (7) Sharma and collaborators (University Hospital Zurich; Zurich, Switzerland) and Gerber et al. (University of Rochester Medical Center; Rochester, NY, US), who independently showed that radiation therapy induces an intratumoral immune response (characterized by the recruitment of T lymphocytes and the secretion of TH1 cytokines), whose magnitude correlates with disease outcome;246,247 (8) Spary and colleagues (Cardiff University; Cardiff, UK), who demonstrated that low-dose irradiation significantly boosts the effector functions of T lymphocytes upon antigenic stimulation;248 and (9) Eke and co-workers (Dresden University of Technology; Dresden, Germany), who identified the overexpression of fibronectin and the resultant increase in cell-fibronectin interactions as a possible means by which cetuximab promotes radioresistance.249 It remains to be determined whether this mechanism is also responsible for the accrued toxicity of cetuximab-based radioimmunotherapy observed in recent clinical trials.162,180

Update On Ongoing Clinical Trials

When this Trial Watch was being redacted (June 2014), official sources listed no less than 98 clinical trials launched after June 1st, 2013 aiming to evaluate the efficacy and safety of radioimmunotherapy in cancer patients (source http://www.clinicaltrials.gov). Of these studies, (1) 2 trials involve tumor-targeting mAbs, such as cetuximab89,250 or the vascular endothelial growth factor (VEGF)-targeting mAb bevacizumab (which is currently approved by the US FDA for use in patients affected by colorectal, lung and renal carcinoma);251-253 (2) 4 studies involve immunostimulatory mAbs, such as the cytotoxic T lymphocyte-associated protein 4 (CTLA4)-specific mAb ipilimumab (which is currently licensed for use in melanoma patients);254-257 (3) 62 immunostimulatory chemotherapeutics, including ICD-inducing agents as well as compounds that stimulate anticancer immune responses in an ICD-unrelated manner;86-89 (4) 3 recombinant cytokines, including IL-2;240,258 (5) 1 experimental Toll-like receptor (TLR) agonists, such as polyinosinic-polycytidylic acid stabilized in carboxymethylcellulose and poly-L-lysine;259-261 (6) 1 experimental RNA-based anticancer vaccines;262-264 (7) 1 an experimental DC-based tumor-targeting vaccine;265,266 and (8) 23 combinatorial strategies based on at least 2 distinct immunotherapeutic regimens (Table 1).

Table 1.

Current trends in anticancer radioimmunotherapy*

Cancer type Phase Notes
Brain tumors I-III 5 The panel of radioimmunotherapeutic paradigms tested for these oncological indications is  relatively heterogeneous
Breast carcinoma 0-III 4 In a majority of cases, EBRT is administered together with immunostimulatory chemotherapy  plus a tumor-targeting mAb
Colorectal carcinoma I-III 14 EBRT is generally employed in combination with oxaliplatin-based chemotherapy
Gastroesophageal carcinoma I-III 8 Most often, EBRT is administered in combination with one or more immunostimulatory  chemotherapeutic agents, including paclitaxel and capecitabine
Head and neck cancer I-III 15 In the majority of indications, EBRT is combined with paclitaxel, cisplatin and/or an EGFR- targeting mAb
Hematological neoplasms I-III 8 Internal radiotherapy based on a tumor-targeting mAb is given alone or together with another  immunostimulatory agent
Hepatic neoplasms II-III 2 Radiation therapy is coupled to TACE based on immunostimulatory chemotherapeutics
Melanoma I-II 6 EBRT is generally given in combination with ipilimumab
Neuroectodermal tumors and sarcomas II 2 EBRT is combined with immunostimulatory chemotherapy, alone or together with the VEGF- neutralizing mAb bevacizumab
Pancreatic cancer 0-III 11 Most frequently, EBRT in one of its variants is administered in the context of gemcitabine-based  chemotherapeutic regimens
Pulmonary carcinomas I-III 8 EBRT is generally combined with immunostimulatory chemotherapy based on and a platinum  derivative plus a taxane
Renal cell carcinoma I-II 3 SBRT is combined either with high-dose IL-2 or with the adoptive transfer of autologous  lymphocytes
Reproductive tract neoplasms I-III 7 EBRT is often given in combination with immunostimulatory chemotherapeutics including  taxanes a platinum derivatives
Others I-III 5 The radioimmunotherapeutic regimens in these oncological indications are relatively  heterogeneous

Abbreviations: EBRT, external body radiation therapy; EGFR, epidermal growth factor receptor; IL-2, interleukin-2; mAb, monoclonal antibody; SBRT, stereotactic body radiation therapy; TACE, transarterial chemoembolization; VEGF, vascular endothelial growth factor.

*Based on clinical trials started after 2013 June 1st and not withdrawn, terminated or suspended by the day of manuscript submission (source www.clinicaltrials.gov).

Reflecting currently approved therapeutic protocols,267-274 many of these clinical trials enroll patients with head and neck cancer (15 trials), gastric or gastroesophageal carcinoma (8 trials), colorectal carcinoma (14 trials), pancreatic cancer (11 trials) or non-small cell lung carcinoma (7 trials). In these settings, a variant of EBRT is generally combined with an immunostimulatory chemotherapeutic regimen, most often based on oxaliplatin in the case of individuals with colorectal carcinoma, gemcitabine in the case of pancreatic cancer patients, and a platinum derivative plus a taxane in the case of subjects bearing head and neck, gastric, gastroesophageal or pulmonary neoplasms. Along similar lines, 5 studies have recently been initiated to investigate the safety and efficacy of radiation therapy combined with ipilimumab or high-dose IL-2 in melanoma patients. These observations suggest that most of the recent clinical trials involving EBRT and one or more immunostimulatory agents rely on radiochemotherapeutic protocols developed prior to the recognition of the immunomodulatory potential of some chemotherapeutics (Table 1).275 In line with this notion, only a few such studies are being performed in the context of appropriate immunomonitoring procedures,276-278 allowing investigators to assess not only toxicity and efficacy, but also the actual involvement of the immune system in disease outcome.

As for the clinical trials listed in our previous Trial Watch dealing with this topic,7 the following studies have changed status during the past 12 months: (1) NCT01730157 and NCT-01769222, which have been “suspended”; (2) NCT01326923 and NCT01790516, which have been “terminated”; (3) NCT01634880, NCT01652261 and NCT01728480, which have been “withdrawn”; (4) NCT01290120, NCT01468740, NCT01567202, NCT01569984, NCT01612247, and NCT01-653301, whose status is now “unknown”; (5) NCT01760811, which is listed as “not yet recruiting”; (6) NCT01362127, which appears to be “enrolling by invitation”; (7) NCT01347034, NCT01440270, NCT01497275, NCT01507103, NCT0153-9824, NCT01566435, and NCT01740258, which are indicated as “active, not recruiting”; (8) NCT01557114, NCT01749956, NCT01769508, NCT01795430, NCT01798004, NCT01807-065, NCT01818986, NCT01821729, NCT01833208, NCT0-1843829, NCT01850888, NCT01857934, which are now “recruiting” participants; and (9) NCT01249352, NCT012-71439, NCT01298401, NCT01332929, NCT01434147 and NCT01523847, which are listed as “completed” (source http://www.clinicaltrials.gov). NCT01730157, testing radioembolization plus ipilimumab in patients with metastatic uveal melanoma, has been suspended owing to administrative issues, whereas NCT01769222, investigating the clinical profile of radiation therapy plus ipilimumab in patients with melanoma, colorectal carcinoma or NHL, has been suspended following the decision of the local Data and Safety Monitoring Committee. NCT01326923 and NCT01790516, both assessing the therapeutic profile of cisplatin-based chemoradiation plus cetuximab in patients with locally advanced head and neck squamous cell carcinoma, have been terminated either because the principal investigator left the institution or owing to an excessively low accrual rate, respectively. Along similar lines, NCT01634880, testing adjuvant irradiation plus an experimental EGFR-targeting mAb in subjects with high-risk salivary gland malignancies, and NCT01652261, investigating the clinical profile of radiation therapy plus multimodal immunostimulatory chemotherapy in Hodgkin's lymphoma patients, have been withdrawn prior to enrollment for lack of accrual. Conversely, NCT01728480, which aimed at assessing the safety and efficacy of cisplatin-based chemoradiation plus a recombinant TLR5 agonist (i.e., entolimod),279 has been withdrawn as per the request of the sponsoring agency. Finally, to the best of our knowledge, the results of NCT01249352 (testing chemoradiation plus an EGFR-specific mAb in subjects with locally advanced esophageal carcinoma), NCT01271439 (assessing the clinical profile chemoradiation plus cetuximab in nasopharyngeal carcinoma patients), NCT01298401 (investigating the safety and efficacy of EBRT plus immunostimulatory chemotherapy and/or a mAb targeting the insulin-like growth 1 factor receptor in individuals with pancreatic cancer), NCT01332929 (testing radiation therapy in combination with bevacizumab for the treatment of brain metastases), NCT01434147 (evaluating whether immunostimulatory chemotherapy, bevacizumab and EBRT can be safely and effectively combined for use in colorectal cancer patients) and NCT01523847 (assessing the clinical profile of an immunostimulatory chemotherapeutic regimen optionally administered together with EBRT in cardiopathic subjects with Hodgkin's lymphoma) have not yet been released (source: http://www.clinicaltrials.gov).

Concluding Remarks

Similar to the action of some chemotherapeutic agents, such as the nucleoside analog gemcitabine280,281 and the DNA alkylating agent cyclophosphamide,282,283 radiotherapy per se mediates direct antineoplastic effects while stimulating the insurgence of a tumor-specific adaptive immune response.88,89 Besides accounting for the so-called abscopal effect, i.e., the ability of ionizing irradiation to induce the regression of distant, non-irradiated lesions, such a dual activity may explain the relative success of this widely employed therapeutic option.1,2 If this were the case, X- or γ-rays would improve the clinical profile of immunotherapeutic agents including DNA-based, peptide-based or DC-based vaccines,262,266,284 immunomodulatory cytokines,239 TLR agonists,259,260 and immunostimulatory antibodies.285 One of the major impediments against the development of radioimmunotherapeutic paradigms of this type is the identification of the doses and administration schedules that maximize the immunostimulatory potential of ionizing irradiation while preserving its ability to directly inhibit tumor growth.248 The results of large, randomized and properly monitored trials are urgently awaited to facilitate the design of novel radioimmunotherapeutic regimens with improved clinical activity.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Funding

Authors are supported by Associazione Italiana per la Ricerca sul Cancro (AIRC), Ligue contre le Cancer (équipe labelisée); Agence National de la Recherche (ANR); Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; AXA Chair for Longevity Research; Institut National du Cancer (INCa); Fondation Bettencourt-Schueller; Fondation de France; Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European Research Council (ERC); the LabEx Immuno-Oncology; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI).

References

  • 1. Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer 2004; 4:737-47; PMID:; http://dx.doi.org/ 10.1038/nrc1451/ [DOI] [PubMed] [Google Scholar]
  • 2. Thariat J, Hannoun-Levi JM, Sun Myint A, Vuong T, Gerard JP. Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol 2013; 10:52-60; PMID:; http://dx.doi.org/ 10.1038/nrclinonc.2012.203 [DOI] [PubMed] [Google Scholar]
  • 3. Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 2005; 104:1129-37; PMID:; http://dx.doi.org/ 10.1002/cncr.21324 [DOI] [PubMed] [Google Scholar]
  • 4. Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S, et al. . Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 2012; 62:220-41; PMID:; http://dx.doi.org/ 10.3322/caac.21149 [DOI] [PubMed] [Google Scholar]
  • 5. Bartelink H, Horiot JC, Poortmans P, Struikmans H, Van den Bogaert W, Barillot I, Fourquet A, Borger J, Jager J, Hoogenraad W, et al. . Recurrence rates after treatment of breast cancer with standard radiotherapy with or without additional radiation. N Engl J Med 2001; 345:1378-87; PMID:; http://dx.doi.org/ 10.1056/NEJMoa010874 [DOI] [PubMed] [Google Scholar]
  • 6. Romestaing P, Lehingue Y, Carrie C, Coquard R, Montbarbon X, Ardiet JM, Mamelle N, Gérard JP. Role of a 10-Gy boost in the conservative treatment of early breast cancer: results of a randomized clinical trial in Lyon, France. J Clin Oncol 1997; 15:963-8; PMID: [DOI] [PubMed] [Google Scholar]
  • 7. Vacchelli E, Vitale I, Tartour E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: anticancer radioimmunotherapy. Oncoimmunology 2013; 2:e25595; PMID:; http://dx.doi.org/ 10.4161/onci.25595 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Ahmad SS, Duke S, Jena R, Williams MV, Burnet NG. Advances in radiotherapy. BMJ 2012; 345:e7765; PMID:; http://dx.doi.org/ 10.1136/bmj.e7765 [DOI] [PubMed] [Google Scholar]
  • 9. DeVita VT, Jr, Lawrence TS, Rosenberg SA., Cancer : principles & practice of oncology. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins, 2008. [Google Scholar]
  • 10. Prise KM, O'Sullivan JM. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer 2009; 9:351-60; PMID:; http://dx.doi.org/ 10.1038/nrc2603 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Hall EJGAJ. Radiobiology for the radiologist. Philadelphia: Lippincott Williams & Wilkins, 2006. [Google Scholar]
  • 12. Garg AD, Krysko DV, Vandenabeele P, Agostinis P. The emergence of phox-ER stress induced immunogenic apoptosis. Oncoimmunology 2012; 1:786-8; PMID:; http://dx.doi.org/ 10.4161/onci.19750 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8:729-40; PMID:; http://dx.doi.org/ 10.1038/nrm2233 [DOI] [PubMed] [Google Scholar]
  • 14. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 2013; 123:966-72; PMID:; http://dx.doi.org/ 10.1172/JCI64098 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Verheij M. Clinical biomarkers and imaging for radiotherapy-induced cell death. Cancer Metastasis Rev 2008; 27:471-80; PMID:; http://dx.doi.org/ 10.1007/s10555-008-9131-1 [DOI] [PubMed] [Google Scholar]
  • 16. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153:1194-217; PMID:; http://dx.doi.org/ 10.1016/j.cell.2013.05.039 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, et al. . Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ 2012; 19:107-20; PMID:; http://dx.doi.org/ 10.1038/cdd.2011.96 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87:99-163; PMID:; http://dx.doi.org/ 10.1152/physrev.00013.2006 [DOI] [PubMed] [Google Scholar]
  • 19. Tait SW, Green DR. Mitochondria and cell signalling. J Cell Sci 2012; 125:807-15; PMID:; http://dx.doi.org/ 10.1242/jcs.099234 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 2010; 11:621-32; PMID:; http://dx.doi.org/ 10.1038/nrm2952 [DOI] [PubMed] [Google Scholar]
  • 21. Honeychurch J, Dive C, Illidge TM. Synchronous apoptosis in established tumors leads to the induction of adaptive immunity. Oncoimmunology 2013; 2:e24501; PMID:; http://dx.doi.org/ 10.4161/onci.24501 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Linkermann A, Green DR. Necroptosis. N Engl J Med 2014; 370:455-65; PMID:; http://dx.doi.org/ 10.1056/NEJMra1310050 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 2010; 11:700-14; PMID:; http://dx.doi.org/ 10.1038/nrm2970 [DOI] [PubMed] [Google Scholar]
  • 24. Galluzzi L, Kroemer G. Necroptosis: a specialized pathway of programmed necrosis. Cell 2008; 135:1161-3; PMID:; http://dx.doi.org/ 10.1016/j.cell.2008.12.004 [DOI] [PubMed] [Google Scholar]
  • 25. Seya T, Shime H, Takaki H, Azuma M, Oshiumi H, Matsumoto M. TLR3/TICAM-1 signaling in tumor cell RIP3-dependent necroptosis. Oncoimmunology 2012; 1:917-23; PMID:; http://dx.doi.org/ 10.4161/onci.21244 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Galluzzi L, Kepp O, Krautwald S, Kroemer G, Linkermann A. Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol 2014; 35C:24-32; PMID:; http://dx.doi: 10.1016/j.semcdb.2014.02.006 [DOI] [PubMed] [Google Scholar]
  • 27. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 2014; 15:135-47; PMID:; http://dx.doi.org/ 10.1038/nrm3737 [DOI] [PubMed] [Google Scholar]
  • 28. Vigneron A, Vousden KH. p53, ROS and senescence in the control of aging. Aging (Albany NY) 2010; 2:471-4; PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol 2007; 8:275-83; PMID:; http://dx.doi.org/ 10.1038/nrm2147 [DOI] [PubMed] [Google Scholar]
  • 30. Galluzzi L, Kepp O, Kroemer G. TP53 and MTOR crosstalk to regulate cellular senescence. Aging (Albany NY) 2010; 2:535-7; PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Vitale I, Galluzzi L, Castedo M, Kroemer G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 2011; 12:385-92; PMID:; http://dx.doi.org/ 10.1038/nrm3115 [DOI] [PubMed] [Google Scholar]
  • 32. Vitale I, Galluzzi L, Senovilla L, Criollo A, Jemaa M, Castedo M, Kroemer G. Illicit survival of cancer cells during polyploidization and depolyploidization. Cell Death Differ 2011; 18:1403-13; PMID:; http://dx.doi.org/ 10.1038/cdd.2010.145 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Lehnert BE, Goodwin EH, Deshpande A. Extracellular factor(s) following exposure to alpha particles can cause sister chromatid exchanges in normal human cells. Cancer Res 1997; 57:2164-71; PMID: [PubMed] [Google Scholar]
  • 34. Shao C, Furusawa Y, Aoki M, Matsumoto H, Ando K. Nitric oxide-mediated bystander effect induced by heavy-ions in human salivary gland tumour cells. Int J Radiat Biol 2002; 78:837-44; PMID:; http://dx.doi.org/ 10.1080/09553000210149786 [DOI] [PubMed] [Google Scholar]
  • 35. Shao C, Stewart V, Folkard M, Michael BD, Prise KM. Nitric oxide-mediated signaling in the bystander response of individually targeted glioma cells. Cancer Res 2003; 63:8437-42; PMID: [PubMed] [Google Scholar]
  • 36. Chou CH, Chen PJ, Lee PH, Cheng AL, Hsu HC, Cheng JC. Radiation-induced hepatitis B virus reactivation in liver mediated by the bystander effect from irradiated endothelial cells. Clin Cancer Res 2007; 13:851-7; PMID:; http://dx.doi.org/ 10.1158/1078-0432.CCR-06-2459 [DOI] [PubMed] [Google Scholar]
  • 37. Narayanan PK, LaRue KE, Goodwin EH, Lehnert BE. Alpha particles induce the production of interleukin-8 by human cells. Radiat Res 1999; 152:57-63; PMID:; http://dx.doi.org/ 10.2307/3580049 [DOI] [PubMed] [Google Scholar]
  • 38. Iyer R, Lehnert BE, Svensson R. Factors underlying the cell growth-related bystander responses to alpha particles. Cancer Res 2000; 60:1290-8; PMID: [PubMed] [Google Scholar]
  • 39. Zhou H, Ivanov VN, Gillespie J, Geard CR, Amundson SA, Brenner DJ, Yu Z, Lieberman HB, Hei TK. Mechanism of radiation-induced bystander effect: role of the cyclooxygenase-2 signaling pathway. Proc Natl Acad Sci U S A 2005; 102:14641-6; PMID:; http://dx.doi.org/ 10.1073/pnas.0505473102 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Mothersill C, Seymour CB. Radiation-induced bystander effects–implications for cancer. Nat Rev Cancer 2004; 4:158-64; PMID:; http://dx.doi.org/ 10.1038/nrc1277 [DOI] [PubMed] [Google Scholar]
  • 41. Golden EB, Formenti SC. Is tumor (R)ejection by the immune system the "5th R" of radiobiology? Oncoimmunology 2014; 3:e28133; PMID:; http://dx.doi.org/ 10.4161/onci.28133 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31:51-72; PMID:; http://dx.doi.org/ 10.1146/annurev-immunol-032712-100008 [DOI] [PubMed] [Google Scholar]
  • 43. Kono K, Mimura K. Immunogenic tumor cell death induced by chemoradiotherapy in a clinical setting. Oncoimmunology 2013; 2:e22197; PMID:; http://dx.doi.org/ 10.4161/onci.22197 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 2012; 13:780-8; PMID:; http://dx.doi.org/ 10.1038/nrm3479 [DOI] [PubMed] [Google Scholar]
  • 45. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012; 12:860-75; PMID:; http://dx.doi.org/ 10.1038/nrc3380 [DOI] [PubMed] [Google Scholar]
  • 46. Garg AD, Dudek AM, Agostinis P. Autophagy-dependent suppression of cancer immunogenicity and effector mechanisms of innate and adaptive immunity. Oncoimmunology 2013; 2:e26260; PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Kroemer G, Zitvogel L. Abscopal but desirable: The contribution of immune responses to the efficacy of radiotherapy. Oncoimmunology 2012; 1:407-8; PMID:; http://dx.doi.org/ 10.4161/onci.20074 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Gupta A, Sharma A, von Boehmer L, Surace L, Knuth A, van den Broek M. Radiotherapy supports protective tumor-specific immunity. Oncoimmunology 2012; 1:1610-1; PMID:; http://dx.doi.org/ 10.4161/onci.21478 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC. An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res 2013; 1:365-72; PMID:; http://dx.doi.org/ 10.1158/2326-6066.CIR-13-0115 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Hiniker SM, Chen DS, Knox SJ. Abscopal effect in a patient with melanoma. N Engl J Med 2012; 366:2035; author reply -6; PMID:; http://dx.doi.org/ 10.1056/NEJMc1203984 [DOI] [PubMed] [Google Scholar]
  • 51. Galluzzi L, Kepp O, Kroemer G. Immunogenic cell death in radiation therapy. Oncoimmunology 2013; 2:e26536; PMID:; http://dx.doi.org/ 10.4161/onci.26536 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Liang H, Deng L, Burnette B, Weichselbaum RR, Fu YX. Radiation-induced tumor dormancy reflects an equilibrium between the proliferation and T lymphocyte-mediated death of malignant cells. Oncoimmunology 2013; 2:e25668; PMID:; http://dx.doi.org/ 10.4161/onci.25668 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 2011; 91:1071-121; PMID:; http://dx.doi.org/ 10.1152/physrev.00038.2010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307:58-62; PMID:; http://dx.doi.org/ 10.1126/science.1104819 [DOI] [PubMed] [Google Scholar]
  • 55. Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, Sandoval F, Quintin-Colonna F, Lacerda K, Karadimou A, et al. . Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev 2011; 30:83-95; PMID:; http://dx.doi.org/ 10.1007/s10555-011-9281-4 [DOI] [PubMed] [Google Scholar]
  • 56. Milano MT, Constine LS, Okunieff P. Normal tissue tolerance dose metrics for radiation therapy of major organs. Semin Radiat Oncol 2007; 17:131-40; PMID:; http://dx.doi.org/ 10.1016/j.semradonc.2006.11.009 [DOI] [PubMed] [Google Scholar]
  • 57. Stone HB, Coleman CN, Anscher MS, McBride WH. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol 2003; 4:529-36; PMID:; http://dx.doi.org/ 10.1016/S1470-2045(03)01191-4 [DOI] [PubMed] [Google Scholar]
  • 58. Trotti A, Colevas AD, Setser A, Rusch V, Jaques D, Budach V, Langer C, Murphy B, Cumberlin R, Coleman CN, et al. . CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol 2003; 13:176-81; PMID:; http://dx.doi.org/ 10.1016/S1053-4296(03)00031-6 [DOI] [PubMed] [Google Scholar]
  • 59. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991; 21:109-22; PMID:; http://dx.doi.org/ 10.1016/0360-3016(91)90171-Y [DOI] [PubMed] [Google Scholar]
  • 60. Jereczek-Fossa BA, Marsiglia HR, Orecchia R. Radiotherapy-related fatigue. Crit Rev Oncol Hematol 2002; 41:317-25; PMID:; http://dx.doi.org/ 10.1016/S1040-8428(01)00143-3 [DOI] [PubMed] [Google Scholar]
  • 61. Travis LB, Ng AK, Allan JM, Pui CH, Kennedy AR, Xu XG, Purdy JA, Applegate K, Yahalom J, Constine LS, et al. . Second malignant neoplasms and cardiovascular disease following radiotherapy. J Natl Cancer Inst 2012; 104:357-70; PMID:; http://dx.doi.org/ 10.1093/jnci/djr533 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Berrington de Gonzalez A, Curtis RE, Kry SF, Gilbert E, Lamart S, Berg CD, Stovall M, Ron E. Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. Lancet Oncol 2011; 12:353-60; PMID:; http://dx.doi.org/ 10.1016/S1470-2045(11)70061-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Tubiana M. Can we reduce the incidence of second primary malignancies occurring after radiotherapy? A critical review. Radiother Oncol 2009; 91:4-15; discussion 1-3; http://dx.doi.org/ 10.1016/j.radonc.2008.12.016 [DOI] [PubMed] [Google Scholar]
  • 64. Movsas B, Vikram B, Hauer-Jensen M, Moulder JE, Basch E, Brown SL, Kachnic LA, Dicker AP, Coleman CN, Okunieff P. Decreasing the adverse effects of cancer therapy: National cancer institute guidance for the clinical development of radiation injury mitigators. Clin Cancer Res 2011; 17:222-8; PMID:; http://dx.doi.org/ 10.1158/1078-0432.CCR-10-1402 [DOI] [PubMed] [Google Scholar]
  • 65. Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, Bentzen SM, Nam J, Deasy JO. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 2010; 76:S10-9; PMID:; http://dx.doi.org/ 10.1016/j.ijrobp.2009.07.1754 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. Barnett GC, West CM, Dunning AM, Elliott RM, Coles CE, Pharoah PD, Burnet NG. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer 2009; 9:134-42; PMID:; http://dx.doi.org/ 10.1038/nrc2587 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Mahmood J, Jelveh S, Calveley V, Zaidi A, Doctrow SR, Hill RP. Mitigation of radiation-induced lung injury by genistein and EUK-207. Int J Radiat Biol 2011; 87:889-901; PMID:; http://dx.doi.org/ 10.3109/09553002.2011.583315 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Jiang J, Stoyanovsky DA, Belikova NA, Tyurina YY, Zhao Q, Tungekar MA, Kapralova V, Huang Z, Mintz AH, Greenberger JS, et al. . A mitochondria-targeted triphenylphosphonium-conjugated nitroxide functions as a radioprotector/mitigator. Radiat Res 2009; 172:706-17; PMID:; http://dx.doi.org/ 10.1667/RR1729.1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Andreassen CN, Grau C, Lindegaard JC. Chemical radioprotection: a critical review of amifostine as a cytoprotector in radiotherapy. Semin Radiat Oncol 2003; 13:62-72; PMID:; http://dx.doi.org/ 10.1053/srao.2003.50006 [DOI] [PubMed] [Google Scholar]
  • 70. Xavier S, Yamada K, Samuni AM, Samuni A, DeGraff W, Krishna MC, et al. . Differential protection by nitroxides and hydroxylamines to radiation-induced and metal ion-catalyzed oxidative damage. Biochim Biophys Acta 2002; 1573:109-20; PMID:; http://dx.doi.org/ 10.1016/S0304-4165(02)00339-2 [DOI] [PubMed] [Google Scholar]
  • 71. Atkinson J, Kapralov AA, Yanamala N, Tyurina YY, Amoscato AA, Pearce L, Peterson J, Huang Z, Jiang J, Samhan-Arias AK, et al. . A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death. Nat Commun 2011; 2:497; PMID:; http://dx.doi.org/ 10.1038/ncomms1499 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Meyn RE, Milas L, Ang KK. The role of apoptosis in radiation oncology. Int J Radiat Biol 2009; 85:107-15; PMID:; http://dx.doi.org/ 10.1080/09553000802662595 [DOI] [PubMed] [Google Scholar]
  • 73. Belka C, Budach W. Anti-apoptotic Bcl-2 proteins: structure, function and relevance for radiation biology. Int J Radiat Biol 2002; 78:643-58; PMID:; http://dx.doi.org/ 10.1080/09553000210137680 [DOI] [PubMed] [Google Scholar]
  • 74. Farrell CL, Bready JV, Rex KL, Chen JN, DiPalma CR, Whitcomb KL, Yin S, Hill DC, Wiemann B, Starnes CO, et al. . Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res 1998; 58:933-9; PMID: [PubMed] [Google Scholar]
  • 75. Le QT, Kim HE, Schneider CJ, Murakozy G, Skladowski K, Reinisch S, Chen Y, Hickey M, Mo M, Chen MG, et al. . Palifermin reduces severe mucositis in definitive chemoradiotherapy of locally advanced head and neck cancer: a randomized, placebo-controlled study. J Clin Oncol 2011; 29:2808-14; PMID:; http://dx.doi.org/ 10.1200/JCO.2010.32.4095 [DOI] [PubMed] [Google Scholar]
  • 76. Spielberger R, Stiff P, Bensinger W, Gentile T, Weisdorf D, Kewalramani T, Shea T, Yanovich S, Hansen K, Noga S, et al. . Palifermin for oral mucositis after intensive therapy for hematologic cancers. N Engl J Med 2004; 351:2590-8; PMID:; http://dx.doi.org/ 10.1056/NEJMoa040125 [DOI] [PubMed] [Google Scholar]
  • 77. Zheng H, Wang J, Koteliansky VE, Gotwals PJ, Hauer-Jensen M. Recombinant soluble transforming growth factor beta type II receptor ameliorates radiation enteropathy in mice. Gastroenterology 2000; 119:1286-96; PMID:; http://dx.doi.org/ 10.1053/gast.2000.19282 [DOI] [PubMed] [Google Scholar]
  • 78. Wang ZD, Qiao YL, Tian XF, Zhang XQ, Zhou SX, Liu HX, Chen Y. Toll-like receptor 5 agonism protects mice from radiation pneumonitis and pulmonary fibrosis. Asian Pac J Cancer Prev 2012; 13:4763-7; PMID:; http://dx.doi.org/ 10.7314/APJCP.2012.13.9.4763 [DOI] [PubMed] [Google Scholar]
  • 79. Burdelya LG, Gleiberman AS, Toshkov I, Aygun-Sunar S, Bapardekar M, Manderscheid-Kern P, Bellnier D, Krivokrysenko VI, Feinstein E, Gudkov AV. Toll-like receptor 5 agonist protects mice from dermatitis and oral mucositis caused by local radiation: implications for head-and-neck cancer radiotherapy. Int J Radiat Oncol Biol Phys 2012; 83:228-34; PMID:; http://dx.doi.org/ 10.1016/j.ijrobp.2011.05.055 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Vijay-Kumar M, Aitken JD, Sanders CJ, Frias A, Sloane VM, Xu J, Neish AS, Rojas M, Gewirtz AT. Flagellin treatment protects against chemicals, bacteria, viruses, and radiation. J Immunol 2008; 180:8280-5; PMID:; http://dx.doi.org/ 10.4049/jimmunol.180.12.8280 [DOI] [PubMed] [Google Scholar]
  • 81. Burdelya LG, Krivokrysenko VI, Tallant TC, Strom E, Gleiberman AS, Gupta D, Kurnasov OV, Fort FL, Osterman AL, Didonato JA, et al. . An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 2008; 320:226-30; PMID:; http://dx.doi.org/ 10.1126/science.1154986 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Haabeth OA, Bogen B, Corthay A. A model for cancer-suppressive inflammation. Oncoimmunology 2012; 1:1146-55; PMID:; http://dx.doi.org/ 10.4161/onci.21542 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Hensley ML, Hagerty KL, Kewalramani T, Green DM, Meropol NJ, Wasserman TH, Cohen GI, Emami B, Gradishar WJ, Mitchell RB, et al. . American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol 2009; 27:127-45; PMID:; http://dx.doi.org/ 10.1200/JCO.2008.17.2627 [DOI] [PubMed] [Google Scholar]
  • 84. Schuchter LM, Hensley ML, Meropol NJ, Winer EP. 2002 update of recommendations for the use of chemotherapy and radiotherapy protectants: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol 2002; 20:2895-903; PMID:; http://dx.doi.org/ 10.1200/JCO.2002.04.178 [DOI] [PubMed] [Google Scholar]
  • 85. Brizel DM, Wasserman TH, Henke M, Strnad V, Rudat V, Monnier A, Eschwege F, Zhang J, Russell L, Oster W, et al. . Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J Clin Oncol 2000; 18:3339-45; PMID: [DOI] [PubMed] [Google Scholar]
  • 86. Bracci L, Schiavoni G, Sistigu A, Belardelli F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ 2014; 21:15-25; PMID:; http://dx.doi.org/ 10.1038/cdd.2013.67 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87. Dudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P. Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev 2013; 24:319-33; PMID:; http://dx.doi: 10.1016/j.cytogfr.2013.01.005 [DOI] [PubMed] [Google Scholar]
  • 88. Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013; 39:74-88; PMID:; http://dx.doi.org/ 10.1016/j.immuni.2013.06.014 [DOI] [PubMed] [Google Scholar]
  • 89. Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215-33; PMID:; http://dx.doi.org/ 10.1038/nrd3626 [DOI] [PubMed] [Google Scholar]
  • 90. Hasumi K, Aoki Y, Wantanabe R, Mann DL. Clinical response of advanced cancer patients to cellular immunotherapy and intensity-modulated radiation therapy. Oncoimmunology 2013; 2:e26381; PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91. Jang H, Chun M, Cho O, Heo JS, Ryu HS, Chang SJ. Prognostic factors and treatment outcome after radiotherapy in cervical cancer patients with isolated para-aortic lymph node metastases. J Gynecol Oncol 2013; 24:229-35; PMID:; http://dx.doi.org/ 10.3802/jgo.2013.24.3.229 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92. Calvo FA, Sole CV, Serrano J, Rodriguez M, Marcos F, Munoz-Calero A, Zorrilla J, Lopez-Baena JA, Diaz-Zorita B, García-Sabrido JL, et al. . Postchemoradiation laparoscopic resection and intraoperative electron-beam radiation boost in locally advanced rectal cancer: long-term outcomes. J Cancer Res Clin Oncol 2013; 139:1825-33; PMID:; http://dx.doi.org/ 10.1007/s00432-013-1506-1 [DOI] [PubMed] [Google Scholar]
  • 93. Hickey R, Mulcahy MF, Lewandowski RJ, Gates VL, Vouche M, Habib A, Kircher S, Newman S, Nimeiri H, Benson AB, et al. . Chemoradiation of hepatic malignancies: prospective, phase 1 study of full-dose capecitabine with escalating doses of yttrium-90 radioembolization. Int J Radiat Oncol Biol Phys 2014; 88:1025-31; PMID:; http://dx.doi.org/ 10.1016/j.ijrobp.2013.12.040 [DOI] [PubMed] [Google Scholar]
  • 94. Li G, Zhang Z, Ma X, Zhu J, Cai G. Postoperative chemoradiotherapy combined with epirubicin-based triplet chemotherapy for locally advanced adenocarcinoma of the stomach or gastroesophageal junction. PLoS One 2013; 8:e54233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95. Budach V, Becker ET, Boehmer D, Badakhshi H, Jahn U, Wernecke KD, Stromberger C. Concurrent hyperfractionated accelerated radiotherapy with 5-FU and once weekly cisplatin in locally advanced head and neck cancer. The 10-year results of a prospective phase II trial. Strahlenther Onkol 2014; 190:250-5; PMID:; http://dx.doi.org/ 10.1007/s00066-013-0481-4 [DOI] [PubMed] [Google Scholar]
  • 96. Komatsu M, Shiono O, Taguchi T, Sakuma Y, Nishimura G, Sano D, Sakuma N, Yabuki K, Arai Y, Takahashi M, et al. . Concurrent chemoradiotherapy with docetaxel, cisplatin and 5-fluorouracil (TPF) in patients with locally advanced squamous cell carcinoma of the head and neck. Jpn J Clin Oncol 2014; 44:416-21; PMID:; http://dx.doi.org/ 10.1093/jjco/hyu026 [DOI] [PubMed] [Google Scholar]
  • 97. Balermpas P, Bauer C, Fraunholz I, Ottinger A, Wagenblast J, Stover T, Seitz O, Fokas E, Rödel C, Weiss C. Concomitant chemoradiotherapy versus induction chemotherapy followed by chemoradiotherapy as definitive, first line treatment of squamous cell carcinoma of the head and neck. A retrospective single center analysis. Strahlenther Onkol 2014; 190:256-62; PMID:; http://dx.doi.org/ 10.1007/s00066-013-0509-9 [DOI] [PubMed] [Google Scholar]
  • 98. Tyc-Szczepaniak D, Wyrwicz L, Kepka L, Michalski W, Olszyna-Serementa M, Palucki J, Pietrzak L, Rutkowski A, Bujko K. Palliative radiotherapy and chemotherapy instead of surgery in symptomatic rectal cancer with synchronous unresectable metastases: a phase II study. Ann Oncol 2013; 24:2829-34; PMID:; http://dx.doi.org/ 10.1093/annonc/mdt363 [DOI] [PubMed] [Google Scholar]
  • 99. Greto D, Paiar F, Saieva C, Galardi A, Mangoni M, Livi L, Agresti B, Franceschini D, Bonomo P, Scotti V, et al. . Neoadjuvant oxaliplatin and 5-fluorouracil with concurrent radiotherapy in patients with locally advanced rectal cancer: a single-institution experience. Radiol Med 2013; 118:570-82; PMID:; http://dx.doi.org/ 10.1007/s11547-012-0909-4 [DOI] [PubMed] [Google Scholar]
  • 100. Murata K, Okamura S, Okubo H, Owada Y, Nishigaki T, Wada Y, Kato R, Makino S, Takeoka T, Okada K, et al. . [Neoadjuvant chemoradiotherapy with capecitabine and oxaliplatin for the treatment of locally advanced lower rectal cancer]. Gan To Kagaku Ryoho 2013; 40:2020-2; PMID: [PubMed] [Google Scholar]
  • 101. Myerson RJ, Tan B, Hunt S, Olsen J, Birnbaum E, Fleshman J, Gao F, Hall L, Kodner I, Lockhart AC, et al. . Five fractions of radiation therapy followed by 4 cycles of FOLFOX chemotherapy as preoperative treatment for rectal cancer. Int J Radiat Oncol Biol Phys 2014; 88:829-36; PMID:; http://dx.doi.org/ 10.1016/j.ijrobp.2013.12.028 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. Gao YH, An X, Sun WJ, Cai J, Cai MY, Kong LH, Lin JZ, Liu GC, Tang JH, Wu XJ, et al. . Evaluation of capecitabine and oxaliplatin administered prior to and then concomitant to radiotherapy in high risk locally advanced rectal cancer. J Surg Oncol 2014; 109:478-82; PMID: [DOI] [PubMed] [Google Scholar]
  • 103. Lu JY, Xiao Y, Qiu HZ, Wu B, Lin GL, Xu L, Zhang GN, Hu K. Clinical outcome of neoadjuvant chemoradiation therapy with oxaliplatin and capecitabine or 5-fluorouracil for locally advanced rectal cancer. J Surg Oncol 2013; 108:213-9; PMID:; http://dx.doi.org/ 10.1002/jso.23394 [DOI] [PubMed] [Google Scholar]
  • 104. Nilsson PJ, van Etten B, Hospers GA, Pahlman L, van de Velde CJ, Beets-Tan RG, Blomqvist L, Beukema JC, Kapiteijn E, Marijnen CA, et al. . Short-course radiotherapy followed by neo-adjuvant chemotherapy in locally advanced rectal cancer–the RAPIDO trial. BMC Cancer 2013; 13:279; PMID:; http://dx.doi.org/ 10.1186/1471-2407-13-279 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105. Funahashi K, Koike J, Shiokawa H, Ushigome M, Shimada H, Kaneko H, Terahara A. Phase I trial of preoperative chemoradiation therapy with S-1 for low rectal cancer. Hepatogastroenterology 2014; 61:99-104; PMID: [PubMed] [Google Scholar]
  • 106. Barsukov YA, Gordeyev SS, Tkachev SI, Fedyanin MY, Perevoshikov AG. Phase II study of concomitant chemoradiotherapy with local hyperthermia and metronidazole for locally advanced fixed rectal cancer. Colorectal Dis 2013; 15:1107-14; PMID: [DOI] [PubMed] [Google Scholar]
  • 107. Calvo FA, Sole CV, Serrano J, Del Valle E, Rodriguez M, Munoz-Calero A, García-Sabrido JL, Garcia-Alfonso P, Peligros I, Alvarez E. Preoperative chemoradiation with or without induction oxaliplatin plus 5-fluorouracil in locally advanced rectal cancer. Long-term outcome analysis. Strahlenther Onkol 2014; 190:149-57; PMID:; http://dx.doi.org/ 10.1007/s00066-013-0469-0 [DOI] [PubMed] [Google Scholar]
  • 108. Ricardi U, Racca P, Franco P, Munoz F, Fanchini L, Rondi N, Dongiovanni V, Gabriele P, Cassoni P, Ciuffreda L, et al. . Prospective phase II trial of neoadjuvant chemo-radiotherapy with Oxaliplatin and Capecitabine in locally advanced rectal cancer (XELOXART). Med Oncol 2013; 30:581; PMID:; http://dx.doi.org/ 10.1007/s12032-013-0581-0 [DOI] [PubMed] [Google Scholar]
  • 109. Herman JM, Fan KY, Wild AT, Hacker-Prietz A, Wood LD, Blackford AL, Ellsworth S, Zheng L, Le DT, De Jesus-Acosta A, et al. . Phase 2 study of erlotinib combined with adjuvant chemoradiation and chemotherapy in patients with resectable pancreatic cancer. Int J Radiat Oncol Biol Phys 2013; 86:678-85; PMID:; http://dx.doi.org/ 10.1016/j.ijrobp.2013.03.032 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110. Passoni P, Reni M, Cattaneo GM, Slim N, Cereda S, Balzano G, Castoldi R, Longobardi B, Bettinardi V, Gianolli L, et al. . Hypofractionated image-guided IMRT in advanced pancreatic cancer with simultaneous integrated boost to infiltrated vessels concomitant with capecitabine: a phase I study. Int J Radiat Oncol Biol Phys 2013; 87:1000-6; PMID:; http://dx.doi.org/ 10.1016/j.ijrobp.2013.09.012 [DOI] [PubMed] [Google Scholar]
  • 111. Zhu DW, Liu Y, Yang X, Yang CZ, Ma J, Qiao JK, Wang LZ, Li J, Zhang CP, Zhang ZY, et al. . Low Annexin A1 expression predicts benefit from induction chemotherapy in oral cancer patients with moderate or poor pathologic differentiation grade. BMC Cancer 2013; 13:301; PMID:; http://dx.doi.org/ 10.1186/1471-2407-13-301 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112. Conroy T, Galais MP, Raoul JL, Bouche O, Gourgou-Bourgade S, Douillard JY, Etienne PL, Boige V, Martel-Lafay I, Michel P, et al. . Definitive chemoradiotherapy with FOLFOX versus fluorouracil and cisplatin in patients with oesophageal cancer (PRODIGE5/ACCORD17): final results of a randomised, phase 2/3 trial. Lancet Oncol 2014; 15:305-14; PMID:; http://dx.doi.org/ 10.1016/S1470-2045(14)70028-2 [DOI] [PubMed] [Google Scholar]
  • 113. Harada H, Nishio M, Murakami H, Ohyanagi F, Kozuka T, Ishikura S, Naito T, Kaira K, Takahashi T, Horiike A, et al. . Dose-escalation study of three-dimensional conformal thoracic radiotherapy with concurrent S-1 and cisplatin for inoperable stage III non-small-cell lung cancer. Clin Lung Cancer 2013; 14:440-5; PMID:; http://dx.doi.org/ 10.1016/j.cllc.2013.01.003 [DOI] [PubMed] [Google Scholar]
  • 114. Hasegawa Y, Okamoto I, Takezawa K, Miyazaki M, Tsurutani J, Yonesaka K, Morinaga R, Tsuya A, Terashima M, Kudoh T, et al. . A phase I study of S-1 with concurrent radiotherapy in elderly patients with locally advanced non-small cell lung cancer. Invest New Drugs 2013; 31:599-604; PMID:; http://dx.doi.org/ 10.1007/s10637-012-9833-7 [DOI] [PubMed] [Google Scholar]
  • 115. Kong L, Hu C, Niu X, Zhang Y, Guo Y, Tham IW, et al. . Neoadjuvant chemotherapy followed by concurrent chemoradiation for locoregionally advanced nasopharyngeal carcinoma: interim results from 2 prospective phase 2 clinical trials. Cancer 2013; 119:4111-8; PMID:; http://dx.doi.org/ 10.1002/cncr.28324 [DOI] [PubMed] [Google Scholar]
  • 116. Chen Y, Sun Y, Liang SB, Zong JF, Li WF, Chen M, Chen L, Mao YP, Tang LL, Guo Y, et al. . Progress report of a randomized trial comparing long-term survival and late toxicity of concurrent chemoradiotherapy with adjuvant chemotherapy versus radiotherapy alone in patients with stage III to IVB nasopharyngeal carcinoma from endemic regions of China. Cancer 2013; 119:2230-8; PMID:; http://dx.doi.org/ 10.1002/cncr.28049 [DOI] [PubMed] [Google Scholar]
  • 117. Nakata K, Sakata K, Someya M, Miura K, Hayashi J, Hori M, Takagi M, Himi T, Kondo A, Hareyama M. Phase I study of oral S-1 and concurrent radiotherapy in patients with head and neck cancer. J Radiat Res 2013; 54:679-83; PMID:; http://dx.doi.org/ 10.1093/jrr/rrs133 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118. Kilburn LB, Kocak M, Schaedeli Stark F, Meneses-Lorente G, Brownstein C, Hussain S, Chintagumpala M, Thompson PA, Gururangan S, Banerjee A, et al. . Phase I trial of capecitabine rapidly disintegrating tablets and concomitant radiation therapy in children with newly diagnosed brainstem gliomas and high-grade gliomas. Neuro Oncol 2013; 15:759-66; PMID:; http://dx.doi.org/ 10.1093/neuonc/nos315 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119. Chen SS, Yang XC, Chi F, Yu WZ, Wang ZB, Ning FL, Yu ZS, Hao YZ, Li ML, Wang F, et al. . A phase II study of preoperative chemotherapy with modified FOLFOX6 followed by surgery and postoperative chemoradiation in patients with localized gastric adenocarcinoma. Oncol Res 2013; 20:327-32; PMID:; http://dx.doi.org/ 10.3727/096504013X13639794277725 [DOI] [PubMed] [Google Scholar]
  • 120. Michel P, Breysacher G, Mornex F, Seitz JF, Pere-Verge D, Martel-Lafay I, Faroux R, Chapet S, Sobhani I, Pezet D, et al. . Feasibility of preoperative and postoperative chemoradiotherapy in gastric adenocarcinoma. Two phase II studies done in parallel. Federation Francophone de Cancerologie Digestive 0308. Eur J Cancer 2014; 50:1076-83; PMID:; http://dx.doi.org/ 10.1016/j.ejca.2013.12.009 [DOI] [PubMed] [Google Scholar]
  • 121. Orditura M, Galizia G, Di Martino N, Ancona E, Castoro C, Pacelli R, Morgillo F, Rossetti S, Gambardella V, Farella A, et al. . Effect of preoperative chemoradiotherapy on outcome of patients with locally advanced esophagogastric junction adenocarcinoma-a pilot study. Curr Oncol 2014; 21:125-33; PMID:; http://dx.doi.org/ 10.3747/co.21.1570 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122. Ajani JA, Xiao L, Roth JA, Hofstetter WL, Walsh G, Komaki R, Liao Z, Rice DC, Vaporciyan AA, Maru DM, et al. . A phase II randomized trial of induction chemotherapy versus no induction chemotherapy followed by preoperative chemoradiation in patients with esophageal cancer. Ann Oncol 2013; 24:2844-9; PMID:; http://dx.doi.org/ 10.1093/annonc/mdt339 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123. Kato K, Nakajima TE, Ito Y, Katada C, Ishiyama H, Tokunaga SY, Tanaka M, Hironaka S, Hashimoto T, Ura T, et al. . Phase II study of concurrent chemoradiotherapy at the dose of 50.4 Gy with elective nodal irradiation for Stage II-III esophageal carcinoma. Jpn J Clin Oncol 2013; 43:608-15; PMID:; http://dx.doi.org/ 10.1093/jjco/hyt048 [DOI] [PubMed] [Google Scholar]
  • 124. Nakamura K, Kato K, Igaki H, Ito Y, Mizusawa J, Ando N, Udagawa H, Tsubosa Y, Daiko H, Hironaka S, et al. . Three-arm phase III trial comparing cisplatin plus 5-FU (CF) versus docetaxel, cisplatin plus 5-FU (DCF) versus radiotherapy with CF (CF-RT) as preoperative therapy for locally advanced esophageal cancer (JCOG1109, NExT study). Jpn J Clin Oncol 2013; 43:752-5; PMID:; http://dx.doi.org/ 10.1093/jjco/hyt061 [DOI] [PubMed] [Google Scholar]
  • 125. Chira C, Kirova YM, Liem X, Campana F, Peurien D, Amessis M, Fournier-Bidoz N, Pierga JY, Dendale R, Bey P, et al. . Helical tomotherapy for inoperable breast cancer: a new promising tool. Biomed Res Int 2013; 2013:264306; PMID:; http://dx.doi.org/ 10.1155/2013/264306 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126. Wu CE, Lin YC, Hong JH, Chuang CK, Pang ST, Liaw CC. Prognostic value of complete response in patients with muscle-invasive bladder cancer undergoing concurrent chemoradiotherapy. Anticancer Res 2013; 33:2605-10; PMID: [PubMed] [Google Scholar]
  • 127. Mitin T, Hunt D, Shipley WU, Kaufman DS, Uzzo R, Wu CL, Buyyounouski MK, Sandler H, Zietman AL. Transurethral surgery and twice-daily radiation plus paclitaxel-cisplatin or fluorouracil-cisplatin with selective bladder preservation and adjuvant chemotherapy for patients with muscle invasive bladder cancer (RTOG 0233): a randomised multicentre phase 2 trial. Lancet Oncol 2013; 14:863-72; PMID:; http://dx.doi.org/ 10.1016/S1470-2045(13)70255-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128. Gunderson LL, Moughan J, Ajani JA, Pedersen JE, Winter KA, Benson AB, 3rd, Thomas CR, Jr, Mayer RJ, Haddock MG, Rich TA, et al. . Anal carcinoma: impact of TN category of disease on survival, disease relapse, and colostomy failure in US Gastrointestinal Intergroup RTOG 98-11 phase 3 trial. Int J Radiat Oncol Biol Phys 2013; 87:638-45; PMID:; http://dx.doi.org/ 10.1016/j.ijrobp.2013.07.035 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129. Chitapanarux I, Tharavichitkul E, Kamnerdsupaphon P, Pukanhapan N, Vongtama R. Randomized phase III trial of concurrent chemoradiotherapy vs accelerated hyperfractionation radiotherapy in locally advanced head and neck cancer. J Radiat Res 2013; 54:1110-7; PMID:; http://dx.doi.org/ 10.1093/jrr/rrt054 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130. Kundel Y, Nasser NJ, Purim O, Yerushalmi R, Fenig E, Pfeffer RM, Stemmer SM, Rizel S, Symon Z, Kaufman B, et al. . Phase II study of concurrent capecitabine and external beam radiotherapy for pain control of bone metastases of breast cancer origin. PLoS One 2013; 8:e68327; PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131. Nakamura A, Itasaka S, Takaori K, Kawaguchi Y, Shibuya K, Yoshimura M, Matsuo Y, Mizowaki T, Uemoto S, Hiraoka M. Radiotherapy for patients with isolated local recurrence of primary resected pancreatic cancer. Prolonged disease-free interval associated with favorable prognosis. Strahlenther Onkol 2014; 190:485-90; PMID:; http://dx.doi.org/ 10.1007/s00066-014-0610-8 [DOI] [PubMed] [Google Scholar]
  • 132. Wagner JY, Schwarz K, Schreiber S, Schmidt B, Wester HJ, Schwaiger M, Peschel C, von Schilling C, Scheidhauer K, Keller U. Myeloablative anti-CD20 radioimmunotherapy +/− high-dose chemotherapy followed by autologous stem cell support for relapsed/refractory B-cell lymphoma results in excellent long-term survival. Oncotarget 2013; 4:899-910; PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133. Kruger PC, Cooney JP, Turner JH. Iodine-131 rituximab radioimmunotherapy with BEAM conditioning and autologous stem cell transplant salvage therapy for relapsed/refractory aggressive non-Hodgkin lymphoma. Cancer Biother Radiopharm 2012; 27:552-60; PMID:; http://dx.doi.org/ 10.1089/cbr.2012.1275 [DOI] [PubMed] [Google Scholar]
  • 134. Eberhardt WE, Gauler TC, Lepechoux C, Stamatis G, Bildat S, Krbek T, Welter S, Grunenwald D, Fischer B, Rodrigo Hde L, et al. . 10-year long-term survival (LTS) of induction chemotherapy with three cycles cisplatin/paclitaxel followed by concurrent chemoradiation cisplatin/etoposide/45 Gy (1.5 Gy bid) plus surgery in locally advanced non-small-cell lung cancer (NSCLC)-a multicenter phase-II trial (CISTAXOL). Lung Cancer 2013; 82:83-9; PMID:; http://dx.doi.org/ 10.1016/j.lungcan.2013.06.007 [DOI] [PubMed] [Google Scholar]
  • 135. Rubenstein JL, Hsi ED, Johnson JL, Jung SH, Nakashima MO, Grant B, Cheson BD, Kaplan LD. Intensive chemotherapy and immunotherapy in patients with newly diagnosed primary CNS lymphoma: CALGB 50202 (Alliance 50202). J Clin Oncol 2013; 31:3061-8; PMID:; http://dx.doi.org/ 10.1200/JCO.2012.46.9957 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136. Jeremic B, Milicic B, Milisavljevic S. Radiotherapy alone versus radiochemotherapy in patients with stage IIIA adenocarcinoma (ADC) of the lung. Clin Transl Oncol 2013; 15:747-53; PMID:; http://dx.doi.org/ 10.1007/s12094-012-1000-2 [DOI] [PubMed] [Google Scholar]
  • 137. Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, Fossa SD, Chodacki A, Wiechno P, Logue J, Seke M, et al. . Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 2013; 369:213-23; PMID:; http://dx.doi.org/ 10.1056/NEJMoa1213755 [DOI] [PubMed] [Google Scholar]
  • 138. Oppedijk V, van der Gaast A, van Lanschot JJ, van Hagen P, van Os R, van Rij CM, van der Sangen MJ, Beukema JC, Rütten H, Spruit PH, et al. . Patterns of recurrence after surgery alone versus preoperative chemoradiotherapy and surgery in the CROSS trials. J Clin Oncol 2014; 32:385-91; PMID:; http://dx.doi.org/ 10.1200/JCO.2013.51.2186 [DOI] [PubMed] [Google Scholar]
  • 139. Lawrence YR, Paulus R, Langer C, Werner-Wasik M, Buyyounouski MK, Komaki R, Machtay M, Smith C, Axelrod RS, Wasserman T, et al. . The addition of amifostine to carboplatin and paclitaxel based chemoradiation in locally advanced non-small cell lung cancer: long-term follow-up of Radiation Therapy Oncology Group (RTOG) randomized trial 9801. Lung Cancer 2013; 80:298-305; PMID:; http://dx.doi.org/ 10.1016/j.lungcan.2013.02.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140. Oh IJ, Kim KS, Kim YC, Ban HJ, Kwon YS, Kim YI, Lim SC, Chung WK, Nam TK, Song JY. A phase III concurrent chemoradiotherapy trial with cisplatin and paclitaxel or docetaxel or gemcitabine in unresectable non-small cell lung cancer: KASLC 0401. Cancer Chemother Pharmacol 2013; 72:1247-54; PMID:; http://dx.doi.org/ 10.1007/s00280-013-2308-5 [DOI] [PubMed] [Google Scholar]
  • 141. Fareed MM, AlAmro AS, Bayoumi Y, Tunio MA, Ismail AS, Akasha R, Mubasher M, Al Asiri M. Intensity-modulated radiotherapy with simultaneous modulated accelerated boost technique and chemotherapy in patients with nasopharyngeal carcinoma. BMC Cancer 2013; 13:318; PMID:; http://dx.doi.org/ 10.1186/1471-2407-13-318 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142. Zhong YH, Dai J, Wang XY, Xie CH, Chen G, Zeng L, Zhou YF. Phase II trial of neoadjuvant docetaxel and cisplatin followed by intensity-modulated radiotherapy with concurrent cisplatin in locally advanced nasopharyngeal carcinoma. Cancer Chemother Pharmacol 2013; 71:1577-83; PMID:; http://dx.doi.org/ 10.1007/s00280-013-2157-2 [DOI] [PubMed] [Google Scholar]
  • 143. Schneider BJ, Lee JS, Hayman JA, Chang AC, Orringer MB, Pickens A, Pan CC, Merajver SD, Urba SG. Pre-operative chemoradiation followed by post-operative adjuvant therapy with tetrathiomolybdate, a novel copper chelator, for patients with resectable esophageal cancer. Invest New Drugs 2013; 31:435-42; PMID:; http://dx.doi.org/ 10.1007/s10637-012-9864-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144. Dogan NU, Yavas G, Yavas C, Ata O, Yilmaz SA, Celik C. Comparison of "sandwich chemo-radiotherapy" and six cycles of chemotherapy followed by adjuvant radiotherapy in patients with stage IIIC endometrial cancer: a single center experience. Arch Gynecol Obstet 2013; 288:845-50; PMID:; http://dx.doi.org/ 10.1007/s00404-013-2817-9 [DOI] [PubMed] [Google Scholar]
  • 145. Nagar H, Boothe D, Parikh A, Yondorf M, Parashar B, Gupta D, Holcomb K, Caputo T, Chao KS, Nori D, et al. . Administration of concurrent vaginal brachytherapy during chemotherapy for treatment of endometrial cancer. Int J Radiat Oncol Biol Phys 2013; 87:665-9; PMID:; http://dx.doi.org/ 10.1016/j.ijrobp.2013.08.014 [DOI] [PubMed] [Google Scholar]
  • 146. Mustea A, Koensgen D, Belau A, Sehouli J, Lichtenegger W, Schneidewind L, Sommer H, Markmann S, Scharf JP, Ehmke M, et al. . Adjuvant sequential chemoradiation therapy in high-risk endometrial cancer: results of a prospective, multicenter phase-II study of the NOGGO (North-Eastern German Society of Gynaecological Oncology). Cancer Chemother Pharmacol 2013; 72:975-83; PMID:; http://dx.doi.org/ 10.1007/s00280-013-2276-9 [DOI] [PubMed] [Google Scholar]
  • 147. Milgrom SA, Kollmeier MA, Abu-Rustum NR, Tew WP, Sonoda Y, Barakat RR, Alektiar KM. Postoperative external beam radiation therapy and concurrent cisplatin followed by carboplatin/paclitaxel for stage III (FIGO 2009) endometrial cancer. Gynecol Oncol 2013; 130:436-40; PMID:; http://dx.doi.org/ 10.1016/j.ygyno.2013.06.024 [DOI] [PubMed] [Google Scholar]
  • 148. Mabuchi S, Takahashi R, Isohashi F, Yokoi T, Ito K, Tsutui T, Ogata T, Yoshioka Y, Ogawa K, Kimura T. A phase I study of concurrent weekly carboplatin and paclitaxel combined with intensity-modulated pelvic radiotherapy as an adjuvant treatment for early-stage cervical cancer patients with positive pelvic lymph nodes. Int J Gynecol Cancer 2013; 23:1279-86; PMID:; http://dx.doi.org/ 10.1097/IGC.0b013e31829c3e32 [DOI] [PubMed] [Google Scholar]
  • 149. Takayama K, Inoue K, Tokunaga S, Matsumoto T, Oshima T, Kawasaki M, Imanaga T, Kuba M, Takeshita M, Harada T, et al. . Phase II study of concurrent thoracic radiotherapy in combination with weekly paclitaxel plus carboplatin in locally advanced non-small cell lung cancer: LOGIK0401. Cancer Chemother Pharmacol 2013; 72:1353-9; PMID:; http://dx.doi.org/ 10.1007/s00280-013-2335-2 [DOI] [PubMed] [Google Scholar]
  • 150. Garrido P, Rosell R, Arellano A, Andreu F, Domine M, Perez-Casas A, Cardenal F, Arnaiz Mdel M, Morán T, Morera R, et al. . Randomized phase II trial of non-platinum induction or consolidation chemotherapy plus concomitant chemoradiation in stage III NSCLC patients: mature results of the Spanish Lung Cancer Group 0008 study. Lung Cancer 2013; 81:84-90; PMID:; http://dx.doi.org/ 10.1016/j.lungcan.2013.03.009 [DOI] [PubMed] [Google Scholar]
  • 151. Braicu EI, Gasimli K, Richter R, Nassir M, Kummel S, Blohmer JU, Yalcinkaya I, Chekerov R, Ignat I, Ionescu A, et al. . Role of serum VEGFA, TIMP2, MMP2 and MMP9 in monitoring response to adjuvant radiochemotherapy in patients with primary cervical cancer–results of a companion protocol of the randomized NOGGO-AGO phase III clinical trial. Anticancer Res 2014; 34:385-91; PMID: [PubMed] [Google Scholar]
  • 152. McCormack M, Kadalayil L, Hackshaw A, Hall-Craggs MA, Symonds RP, Warwick V, Simonds H, Fernando I, Hammond M, James L, Feeney A, Ledermann JA, et al. . A phase II study of weekly neoadjuvant chemotherapy followed by radical chemoradiation for locally advanced cervical cancer. Br J Cancer 2013; 108:2464-9; PMID:; http://dx.doi.org/ 10.1038/bjc.2013.230 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153. Landrum LM, Nugent EK, Zuna RE, Syzek E, Mannel RS, Moore KN, Walker JL, McMeekin DS. Phase II trial of vaginal cuff brachytherapy followed by chemotherapy in early stage endometrial cancer patients with high-intermediate risk factors. Gynecol Oncol 2014; 132:50-4; PMID:; http://dx.doi.org/ 10.1016/j.ygyno.2013.11.005 [DOI] [PubMed] [Google Scholar]
  • 154. Eckert F, Gani C, Kluba T, Mayer F, Kopp HG, Zips D, Bamberg M, Müller AC. Effect of concurrent chemotherapy and hyperthermia on outcome of preoperative radiotherapy of high-risk soft tissue sarcomas. Strahlenther Onkol 2013; 189:482-5; PMID:; http://dx.doi.org/ 10.1007/s00066-013-0312-7 [DOI] [PubMed] [Google Scholar]
  • 155. Held G, Murawski N, Ziepert M, Fleckenstein J, Poschel V, Zwick C, Bittenbring J, Hänel M, Wilhelm S, Schubert J, et al. . Role of radiotherapy to bulky disease in elderly patients with aggressive B-cell lymphoma. J Clin Oncol 2014; 32:1112-8; PMID:; http://dx.doi.org/ 10.1200/JCO.2013.51.4505 [DOI] [PubMed] [Google Scholar]
  • 156. Raftery L, Tepper JE, Goldberg RM, Blackstock AW, Aklilu M, Bernard SA, Ivanova A, Davies JM, O'Neil BH. A two-cohort phase I study of weekly oxaliplatin and gemcitabine, then oxaliplatin, gemcitabine, and erlotinib during radiotherapy for unresectable pancreatic carcinoma. Am J Clin Oncol 2013; 36:250-3; PMID:; http://dx.doi.org/ 10.1097/COC.0b013e3182467f22 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157. Kim EJ, Ben-Josef E, Herman JM, Bekaii-Saab T, Dawson LA, Griffith KA, Francis IR, Greenson JK, Simeone DM, Lawrence TS, et al. . A multi-institutional phase 2 study of neoadjuvant gemcitabine and oxaliplatin with radiation therapy in patients with pancreatic cancer. Cancer 2013; 119:2692-700; PMID:; http://dx.doi.org/ 10.1002/cncr.28117 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158. Roy R, Evens AM, Patton D, Gallot L, Larson A, Rademaker A, Cilley J, Spies S, Variakojis D, Gordon LI, et al. . Bortezomib may be safely combined with Y-90-ibritumomab tiuxetan in patients with relapsed/refractory follicular non-Hodgkin lymphoma: a phase I trial of combined induction therapy and bortezomib consolidation. Leuk Lymphoma 2013; 54:497-502; PMID:; http://dx.doi.org/ 10.3109/10428194.2012.722215 [DOI] [PubMed] [Google Scholar]
  • 159. Manceau G, Brouquet A, Bachet JB, Penna C, El Hajjam M, Rougier P, Nordlinger B, Benoist S. Response of liver metastases to preoperative radiochemotherapy in patients with locally advanced rectal cancer and resectable synchronous liver metastases. Surgery 2013; 154:528-35; PMID:; http://dx.doi.org/ 10.1016/j.surg.2013.02.010 [DOI] [PubMed] [Google Scholar]
  • 160. Sugawara S, Maemondo M, Tachihara M, Inoue A, Ishimoto O, Sakakibara T, Usui K, Watanabe H, Matsubara N, Watanabe K, et al. . Randomized phase II trial of uracil/tegafur and cisplatin versus vinorelbine and cisplatin with concurrent thoracic radiotherapy for locally advanced unresectable stage III non-small-cell lung cancer: NJLCG 0601. Lung Cancer 2013; 81:91-6; PMID:; http://dx.doi.org/ 10.1016/j.lungcan.2013.04.010 [DOI] [PubMed] [Google Scholar]
  • 161. Wu X, Huang PY, Peng PJ, Lu LX, Han F, Wu SX, Hou X, Zhao HY, Huang Y, Fang WF, et al. . Long-term follow-up of a phase III study comparing radiotherapy with or without weekly oxaliplatin for locoregionally advanced nasopharyngeal carcinoma. Ann Oncol 2013; 24:2131-6; PMID:; http://dx.doi.org/ 10.1093/annonc/mdt163 [DOI] [PubMed] [Google Scholar]
  • 162. Deutsch E, Lemanski C, Pignon JP, Levy A, Delarochefordiere A, Martel-Lafay I, Rio E, Malka D, Conroy T, Miglianico L, et al. . Unexpected toxicity of cetuximab combined with conventional chemoradiotherapy in patients with locally advanced anal cancer: results of the UNICANCER ACCORD 16 phase II trial. Ann Oncol 2013; 24:2834-8; PMID:; http://dx.doi.org/ 10.1093/annonc/mdt368 [DOI] [PubMed] [Google Scholar]
  • 163. Pivot X, Gligorov J, Muller V, Barrett-Lee P, Verma S, Knoop A, Curigliano G, Semiglazov V, López-Vivanco G, Jenkins V, et al. . Preference for subcutaneous or intravenous administration of trastuzumab in patients with HER2-positive early breast cancer (PrefHer): an open-label randomised study. Lancet Oncol 2013; 14:962-70; PMID:; http://dx.doi.org/ 10.1016/S1470-2045(13)70383-8 [DOI] [PubMed] [Google Scholar]
  • 164. Schefter T, Winter K, Kwon JS, Stuhr K, Balaraj K, Yaremko BP, Small W, Jr, Sause W, Gaffney D. RTOG 0417: efficacy of bevacizumab in combination with definitive radiation therapy and cisplatin chemotherapy in untreated patients with locally advanced cervical carcinoma. Int J Radiat Oncol Biol Phys 2014; 88:101-5; PMID:; http://dx.doi.org/ 10.1016/j.ijrobp.2013.10.022 [DOI] [PubMed] [Google Scholar]
  • 165. Morris PG, Correa DD, Yahalom J, Raizer JJ, Schiff D, Grant B, Grimm S, Lai RK, Reiner AS, Panageas K, et al. . Rituximab, methotrexate, procarbazine, and vincristine followed by consolidation reduced-dose whole-brain radiotherapy and cytarabine in newly diagnosed primary CNS lymphoma: final results and long-term outcome. J Clin Oncol 2013; 31:3971-9; PMID:; http://dx.doi.org/ 10.1200/JCO.2013.50.4910 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166. Becerra CR, Hanna N, McCollum AD, Becharm N, Timmerman RD, DiMaio M, Kesler KA, Yu M, Yan T, Choy H. A phase II study with cetuximab and radiation therapy for patients with surgically resectable esophageal and GE junction carcinomas: Hoosier Oncology Group G05-92. J Thorac Oncol 2013; 8:1425-9; PMID:; http://dx.doi.org/ 10.1097/JTO.0b013e3182a46c3b [DOI] [PubMed] [Google Scholar]
  • 167. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, et al. . A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014; 370:699-708; PMID:; http://dx.doi.org/ 10.1056/NEJMoa1308573 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168. Solomon MT, Selva JC, Figueredo J, Vaquer J, Toledo C, Quintanal N, Salva S, Domíngez R, Alert J, Marinello JJ, et al. . Radiotherapy plus nimotuzumab or placebo in the treatment of high grade glioma patients: results from a randomized, double blind trial. BMC Cancer 2013; 13:299; PMID:; http://dx.doi.org/ 10.1186/1471-2407-13-299 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169. Sohal DP, Metz JM, Sun W, Giantonio BJ, Plastaras JP, Ginsberg G, Kochman ML, Teitelbaum UR, Harlacker K, Heitjan DF, et al. . Toxicity study of gemcitabine, oxaliplatin, and bevacizumab, followed by 5-fluorouracil, oxaliplatin, bevacizumab, and radiotherapy, in patients with locally advanced pancreatic cancer. Cancer Chemother Pharmacol 2013; 71:1485-91; PMID:; http://dx.doi.org/ 10.1007/s00280-013-2147-4 [DOI] [PubMed] [Google Scholar]
  • 170. Van Buren G, 2nd, Ramanathan RK, Krasinskas AM, Smith RP, Abood GJ, Bahary N, Lembersky BC, Shuai Y, Potter DM, Bartlett DL, et al. . Phase II study of induction fixed-dose rate gemcitabine and bevacizumab followed by 30 Gy radiotherapy as preoperative treatment for potentially resectable pancreatic adenocarcinoma. Ann Surg Oncol 2013; 20:3787-93; PMID:; http://dx.doi.org/ 10.1245/s10434-013-3161-9 [DOI] [PubMed] [Google Scholar]
  • 171. Sclafani F, Gonzalez D, Cunningham D, Hulkki Wilson S, Peckitt C, Giralt J, Glimelius B, Roselló Keränen S, Wotherspoon A, Brown G, et al. . RAS mutations and cetuximab in locally advanced rectal cancer: results of the EXPERT-C trial. Eur J Cancer 2014; 50:1430-6; PMID:; http://dx.doi.org/ 10.1016/j.ejca.2014.02.002 [DOI] [PubMed] [Google Scholar]
  • 172. Preneau S, Rio E, Brocard A, Peuvrel L, Nguyen JM, Quereux G, Dreno B. Efficacy of cetuximab in the treatment of squamous cell carcinoma. J Dermatolog Treat 2014; 25:424-7; PMID:; http://dx.doi.org/ 10.3109/09546634.2012.751481 [DOI] [PubMed] [Google Scholar]
  • 173. Niu X, Hu C, Kong L. Experience with combination of cetuximab plus intensity-modulated radiotherapy with or without chemotherapy for locoregionally advanced nasopharyngeal carcinoma. J Cancer Res Clin Oncol 2013; 139:1063-71; PMID:; http://dx.doi.org/ 10.1007/s00432-013-1419-z [DOI] [PubMed] [Google Scholar]
  • 174. Habl G, Potthoff K, Haefner MF, Abdollahi A, Hassel JC, Boller E, Indorf M, Debus J. Differentiation of irradiation and cetuximab induced skin reactions in patients with locally advanced head and neck cancer undergoing radioimmunotherapy: the HICARE protocol (head and neck cancer: immunochemo and radiotherapy with erbitux) - a multicenter phase IV trial. BMC Cancer 2013; 13:345; PMID:; http://dx.doi.org/ 10.1186/1471-2407-13-345 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175. Barker CA, Postow MA, Khan SA, Beal K, Parhar PK, Yamada Y, Lee NY, Wolchok JD. Concurrent radiotherapy and ipilimumab immunotherapy for patients with melanoma. Cancer Immunol Res 2013; 1:92-8; PMID:; http://dx.doi.org/ 10.1158/2326-6066.CIR-13-0082 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176. Slovin SF, Higano CS, Hamid O, Tejwani S, Harzstark A, Alumkal JJ, Scher HI, Chin K, Gagnier P, McHenry MB, et al. . Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol 2013; 24:1813-21; PMID:; http://dx.doi.org/ 10.1093/annonc/mdt107 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177. Karbach J, Gnjatic S, Biskamp M, Atmaca A, Weidmann E, Brandt K, Wahle C, Bernhard H, Knuth A, Jäger E. Long-term complete remission following radiosurgery and immunotherapy in a melanoma patient with brain metastasis: immunologic correlates. Cancer Immunol Res 2014; 2:404-9; PMID:; http://dx.doi.org/ 10.1158/2326-6066.CIR-13-0200 [DOI] [PubMed] [Google Scholar]
  • 178. Butts C, Socinski MA, Mitchell PL, Thatcher N, Havel L, Krzakowski M, Nawrocki S, Ciuleanu TE, Bosquée L, Trigo JM, et al. . Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol 2014; 15:59-68; PMID:; http://dx.doi.org/ 10.1016/S1470-2045(13)70510-2 [DOI] [PubMed] [Google Scholar]
  • 179. Hitre E, Budai B, Takacsi-Nagy Z, Rubovszky G, Toth E, Remenar E, Polgár C, Láng I. Cetuximab and platinum-based chemoradio- or chemotherapy of patients with epidermal growth factor receptor expressing adenoid cystic carcinoma: a phase II trial. Br J Cancer 2013; 109:1117-22; PMID:; http://dx.doi.org/ 10.1038/bjc.2013.468 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180. Olivatto LO, Vieira FM, Pereira BV, Victorino AP, Bezerra M, Araujo CM, Erlich F, Faroni L, Castro L, Lusis EC, et al. . Phase 1 study of cetuximab in combination with 5-fluorouracil, cisplatin, and radiotherapy in patients with locally advanced anal canal carcinoma. Cancer 2013; 119:2973-80; PMID:; http://dx.doi.org/ 10.1002/cncr.28045 [DOI] [PubMed] [Google Scholar]
  • 181. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D, et al. . Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014; 370:709-22; PMID:; http://dx.doi.org/ 10.1056/NEJMoa1308345 [DOI] [PubMed] [Google Scholar]
  • 182. Shi Z, Das S, Okwan-Duodu D, Esiashvili N, Flowers C, Chen Z, Wang X, Jiang K, Nastoupil LJ, Khan MK. Patterns of failure in advanced stage diffuse large B-cell lymphoma patients after complete response to R-CHOP immunochemotherapy and the emerging role of consolidative radiation therapy. Int J Radiat Oncol Biol Phys 2013; 86:569-77; PMID:; http://dx.doi.org/ 10.1016/j.ijrobp.2013.02.007 [DOI] [PubMed] [Google Scholar]
  • 183. Ramalingam SS, Kotsakis A, Tarhini AA, Heron DE, Smith R, Friedland D, Petro DP, Raez LE, Brahmer JR, Greenberger JS, et al. . A multicenter phase II study of cetuximab in combination with chest radiotherapy and consolidation chemotherapy in patients with stage III non-small cell lung cancer. Lung Cancer 2013; 81:416-21; PMID:; http://dx.doi.org/ 10.1016/j.lungcan.2013.06.002 [DOI] [PubMed] [Google Scholar]
  • 184. Crosby T, Hurt CN, Falk S, Gollins S, Mukherjee S, Staffurth J, Ray R, Bashir N, Bridgewater JA, Geh JI, et al. . Chemoradiotherapy with or without cetuximab in patients with oesophageal cancer (SCOPE1): a multicentre, phase 2/3 randomised trial. Lancet Oncol 2013; 14:627-37; PMID:; http://dx.doi.org/ 10.1016/S1470-2045(13)70136-0 [DOI] [PubMed] [Google Scholar]
  • 185. Tano T, Okamoto M, Kan S, Bando T, Goda H, Nakashiro K, Shimodaira S, Koido S, Homma S, Fujita T, et al. . Immunochemoradiotherapy for patients with oral squamous cell carcinoma: augmentation of OK-432-induced helper T cell 1 response by 5-FU and X-ray irradiation. Neoplasia 2013; 15:805-14; PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 186. Watkins DJ, Starling N, Cunningham D, Thomas J, Webb J, Brown G, Barbachano Y, Oates J, Chau I. The combination of a chemotherapy doublet (gemcitabine and capecitabine) with a biological doublet (bevacizumab and erlotinib) in patients with advanced pancreatic adenocarcinoma. The results of a phase I/II study. Eur J Cancer 2014; 50:1422-9; PMID:; http://dx.doi.org/ 10.1016/j.ejca.2014.02.003 [DOI] [PubMed] [Google Scholar]
  • 187. Hardacre JM, Mulcahy M, Small W, Talamonti M, Obel J, Krishnamurthi S, Rocha-Lima CS, Safran H, Lenz HJ, Chiorean EG. Addition of algenpantucel-L immunotherapy to standard adjuvant therapy for pancreatic cancer: a phase 2 study. J Gastrointest Surg 2013; 17:94-100; discussion p -1; PMID:; http://dx.doi.org/ 10.1007/s11605-012-2064-6 [DOI] [PubMed] [Google Scholar]
  • 188. Esnaola NF, Chaudhary UB, O'Brien P, Garrett-Mayer E, Camp ER, Thomas MB, Cole DJ, Montero AJ, Hoffman BJ, Romagnuolo J, et al. . Phase 2 trial of induction gemcitabine, oxaliplatin, and cetuximab followed by selective capecitabine-based chemoradiation in patients with borderline resectable or unresectable locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 2014; 88:837-44; PMID:; http://dx.doi.org/ 10.1016/j.ijrobp.2013.12.030 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189. Wang LW, Hsiao CF, Chen WT, Lee HH, Lin TC, Chen HC, Chen HH, Chien CR, Lin TY, Liu TW. Celecoxib plus chemoradiotherapy for locally advanced rectal cancer: a phase II TCOG study. J Surg Oncol 2014; 109:580-5; PMID:; http://dx.doi.org/ 10.1002/jso.23538 [DOI] [PubMed] [Google Scholar]
  • 190. van Dijk TH, Tamas K, Beukema JC, Beets GL, Gelderblom AJ, de Jong KP, Nagtegaal ID, Rutten HJ, van de Velde CJ, Wiggers T, et al. . Evaluation of short-course radiotherapy followed by neoadjuvant bevacizumab, capecitabine, and oxaliplatin and subsequent radical surgical treatment in primary stage IV rectal cancer. Ann Oncol 2013; 24:1762-9; PMID:; http://dx.doi.org/ 10.1093/annonc/mdt124 [DOI] [PubMed] [Google Scholar]
  • 191. Schrag D, Weiser MR, Goodman KA, Gonen M, Hollywood E, Cercek A, Reidy-Lagunes DL, Gollub MJ, Shia J, Guillem JG, et al. . Neoadjuvant chemotherapy without routine use of radiation therapy for patients with locally advanced rectal cancer: a pilot trial. J Clin Oncol 2014; 32:513-8; PMID:; http://dx.doi.org/ 10.1200/JCO.2013.51.7904 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 192. Das P, Eng C, Rodriguez-Bigas MA, Chang GJ, Skibber JM, You YN, Maru DM, Munsell MF, Clemons MV, Kopetz SE, et al. . Preoperative radiation therapy with concurrent capecitabine, bevacizumab, and erlotinib for rectal cancer: a phase 1 trial. Int J Radiat Oncol Biol Phys 2014; 88:301-5; PMID:; http://dx.doi.org/ 10.1016/j.ijrobp.2013.10.034 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 193. Fokas E, Conradi L, Weiss C, Sprenger T, Middel P, Rau T, Dellas K, Kitz J, Rödel F, Sauer R, et al. . Preoperative chemoradiation therapy with capecitabine/oxaliplatin and cetuximab in rectal cancer: long-term results of a prospective phase 1/2 study. Int J Radiat Oncol Biol Phys 2013; 87:992-9; PMID:; http://dx.doi.org/ 10.1016/j.ijrobp.2013.09.011 [DOI] [PubMed] [Google Scholar]
  • 194. Matuschek C, Bolke E, Belka C, Ganswindt U, Henke M, Stegmaier P, Bamberg M, Welz S, Debus J, Gioules A, et al. . Feasibility of 6-month maintenance cetuximab after adjuvant concurrent chemoradiation plus cetuximab in squamous cell carcinoma of the head and neck. Strahlenther Onkol 2013; 189:625-31; PMID:; http://dx.doi.org/ 10.1007/s00066-013-0378-2 [DOI] [PubMed] [Google Scholar]
  • 195. Fayette J, Bonnin N, Ferlay C, Lallemant B, Ramade A, Favrel V, Zrounba P, Chabaud S, Pommier P, Poupart M, et al. . Neoadjuvant TPF in locally advanced head and neck cancer can be followed by radiotherapy combined with cisplatin or cetuximab: a study of 157 patients. Anticancer Drugs 2013; 24:623-9; PMID: [DOI] [PubMed] [Google Scholar]
  • 196. Schoffelen R, Boerman OC, Goldenberg DM, Sharkey RM, van Herpen CM, Franssen GM, McBride WJ, Chang CH, Rossi EA, van der Graaf WT, et al. . Development of an imaging-guided CEA-pretargeted radionuclide treatment of advanced colorectal cancer: first clinical results. Br J Cancer 2013; 109:934-42; PMID:; http://dx.doi.org/ 10.1038/bjc.2013.376 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197. Vanazzi A, Grana C, Crosta C, Pruneri G, Rizzo S, Radice D, Pinto A, Calabrese L, Paganelli G, Martinelli G. Efficacy of (9)(0)Yttrium-ibritumomab tiuxetan in relapsed/refractory extranodal marginal-zone lymphoma. Hematol Oncol 2014; 32:10-5; PMID:; http://dx.doi.org/ 10.1002/hon.2078 [DOI] [PubMed] [Google Scholar]
  • 198. Kositwattanarerk A, Changmuang W, Sangsuriyan J, Thongklam K, Sritara C, Utamakul C, Chamroonrat W, Thamnirat K, Anongpornyochkul Y, Chancharunee S. 131I-rituximab treatment in patient with relapsed non-Hodgkin's lymphoma: the first case report in Thailand. J Med Assoc Thai 2013; 96:756-60; PMID: [PubMed] [Google Scholar]
  • 199. Lim I, Park JY, Kang HJ, Hwang JP, Lee SS, Kim KM, Choi TH, Yang SH, Kim BI, Choi CW, et al. . Prognostic significance of pretreatment (1)(8)F-FDG PET/CT in patients with relapsed/refractory B-cell non-Hodgkin's lymphoma treated by radioimmunotherapy using (1)(3)(1)I-rituximab. Acta Haematol 2013; 130:74-82; PMID:; http://dx.doi.org/ 10.1159/000346436 [DOI] [PubMed] [Google Scholar]
  • 200. Gulec SA, Pennington K, Wheeler J, Barot TC, Suthar RR, Hall M, Schwartzentruber D. Yttrium-90 microsphere-selective internal radiation therapy with chemotherapy (chemo-SIRT) for colorectal cancer liver metastases: an in vivo double-arm-controlled phase II trial. Am J Clin Oncol 2013; 36:455-60; PMID:; http://dx.doi.org/ 10.1097/COC.0b013e3182546c50 [DOI] [PubMed] [Google Scholar]
  • 201. Herbertson RA, Tebbutt NC, Lee FT, Gill S, Chappell B, Cavicchiolo T, Saunder T, O'Keefe GJ, Poon A, Lee ST, et al. . Targeted chemoradiation in metastatic colorectal cancer: a phase I trial of 131I-huA33 with concurrent capecitabine. J Nucl Med 2014; 55:534-9; PMID:; http://dx.doi.org/ 10.2967/jnumed.113.132761 [DOI] [PubMed] [Google Scholar]
  • 202. Forrer F, Oechslin-Oberholzer C, Campana B, Herrmann R, Maecke HR, Mueller-Brand J, Lohri A. Radioimmunotherapy with 177Lu-DOTA-rituximab: final results of a phase I/II Study in 31 patients with relapsing follicular, mantle cell, and other indolent B-cell lymphomas. J Nucl Med 2013; 54:1045-52; PMID:; http://dx.doi.org/ 10.2967/jnumed.112.115170 [DOI] [PubMed] [Google Scholar]
  • 203. Vaklavas C, Meredith RF, Shen S, Knox SJ, Micallef IN, Shah JJ, LoBuglio AF, Forero-Torres A. Phase I study of a modified regimen of (9)(0)Yttrium-ibritumomab tiuxetan for relapsed or refractory follicular or transformed CD20+ non-Hodgkin lymphoma. Cancer Biother Radiopharm 2013; 28:370-9; PMID:; http://dx.doi.org/ 10.1089/cbr.2012.1387 [DOI] [PubMed] [Google Scholar]
  • 204. Stillebroer AB, Boerman OC, Desar IM, Boers-Sonderen MJ, van Herpen CM, Langenhuijsen JF, Smith-Jones PM, Oosterwijk E, Oyen WJ, Mulders PF. Phase 1 radioimmunotherapy study with lutetium 177-labeled anti-carbonic anhydrase IX monoclonal antibody girentuximab in patients with advanced renal cell carcinoma. Eur Urol 2013; 64:478-85; PMID:; http://dx.doi.org/ 10.1016/j.eururo.2012.08.024 [DOI] [PubMed] [Google Scholar]
  • 205. Vose JM, Carter S, Burns LJ, Ayala E, Press OW, Moskowitz CH, Stadtmauer EA, Mineshi S, Ambinder R, Fenske T, et al. . Phase III randomized study of rituximab/carmustine, etoposide, cytarabine, and melphalan (BEAM) compared with iodine-131 tositumomab/BEAM with autologous hematopoietic cell transplantation for relapsed diffuse large B-cell lymphoma: results from the BMT CTN 0401 trial. J Clin Oncol 2013; 31:1662-8; PMID:; http://dx.doi.org/ 10.1200/JCO.2012.45.9453 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 206. Morschhauser F, Radford J, Van Hoof A, Botto B, Rohatiner AZ, Salles G, Soubeyran P, Tilly H, Bischof-Delaloye A, van Putten WL, et al. . 90Yttrium-ibritumomab tiuxetan consolidation of first remission in advanced-stage follicular non-Hodgkin lymphoma: updated results after a median follow-up of 7.3 years from the International, Randomized, Phase III First-LineIndolent trial. J Clin Oncol 2013; 31:1977-83; PMID:; http://dx.doi.org/ 10.1200/JCO.2012.45.6400 [DOI] [PubMed] [Google Scholar]
  • 207. Illidge TM, Mayes S, Pettengell R, Bates AT, Bayne M, Radford JA, Ryder WD, Le Gouill S, Jardin F, Tipping J, et al. . Fractionated (9)(0)Y-ibritumomab tiuxetan radioimmunotherapy as an initial therapy of follicular lymphoma: an international phase II study in patients requiring treatment according to GELF/BNLI criteria. J Clin Oncol 2014; 32:212-8; PMID:; http://dx.doi.org/ 10.1200/JCO.2013.50.3110 [DOI] [PubMed] [Google Scholar]
  • 208. Witzig TE, Wiseman GA, Maurer MJ, Habermann TM, Micallef IN, Nowakowski GS, Ansell SM, Colgan JP, Inwards DJ, Porrata LF, et al. . A phase I trial of immunostimulatory CpG 7909 oligodeoxynucleotide and 90 yttrium ibritumomab tiuxetan radioimmunotherapy for relapsed B-cell non-Hodgkin lymphoma. Am J Hematol 2013; 88:589-93; PMID:; http://dx.doi.org/ 10.1002/ajh.23460 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209. Mohiuddin M, Paulus R, Mitchell E, Hanna N, Yuen A, Nichols R, Yalavarthi S, Hayostek C, Willett C. Neoadjuvant chemoradiation for distal rectal cancer: 5-year updated results of a randomized phase 2 study of neoadjuvant combined modality chemoradiation for distal rectal cancer. Int J Radiat Oncol Biol Phys 2013; 86:523-8; PMID:; http://dx.doi.org/ 10.1016/j.ijrobp.2013.02.020 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 210. Gao YH, Zhang X, An X, Cai MY, Zeng ZF, Chen G, Kong LH, Lin JZ, Wan DS, Pan ZZ, et al. . Oxaliplatin and capecitabine concomitant with neoadjuvant radiotherapy and extended to the resting period in high risk locally advanced rectal cancer. Strahlenther Onkol 2014; 190:158-64; PMID:; http://dx.doi.org/ 10.1007/s00066-013-0500-5 [DOI] [PubMed] [Google Scholar]
  • 211. Bosset JF, Calais G, Mineur L, Maingon P, Stojanovic-Rundic S, Bensadoun RJ, Bardet E, Beny A, Ollier JC, Bolla M, et al. . Fluorouracil-based adjuvant chemotherapy after preoperative chemoradiotherapy in rectal cancer: long-term results of the EORTC 22921 randomised study. Lancet Oncol 2014; 15:184-90; PMID:; http://dx.doi.org/ 10.1016/S1470-2045(13)70599-0 [DOI] [PubMed] [Google Scholar]
  • 212. Witzig TE, Gordon LI, Cabanillas F, Czuczman MS, Emmanouilides C, Joyce R, Pohlman BL, Bartlett NL, Wiseman GA, Padre N, et al. . Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma. J Clin Oncol 2002; 20:2453-63; PMID:; http://dx.doi.org/ 10.1200/JCO.2002.11.076 [DOI] [PubMed] [Google Scholar]
  • 213. Kaminski MS, Estes J, Zasadny KR, Francis IR, Ross CW, Tuck M, Regan D, Fisher S, Gutierrez J, Kroll S, et al. . Radioimmunotherapy with iodine (131)I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood 2000; 96:1259-66; PMID: [PubMed] [Google Scholar]
  • 214. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, Morel P, Van Den Neste E, Salles G, Gaulard P, et al. . CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002; 346:235-42; PMID:; http://dx.doi.org/ 10.1056/NEJMoa011795 [DOI] [PubMed] [Google Scholar]
  • 215. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR, Bence-Bruckler I, White CA, Cabanillas F, et al. . Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 1998; 16:2825-33; PMID: [DOI] [PubMed] [Google Scholar]
  • 216. Sorbye SW, Kilvaer T, Valkov A, Donnem T, Smeland E, Al-Shibli K, Bremnes RM, Busund LT. High expression of CD20+ lymphocytes in soft tissue sarcomas is a positive prognostic indicator. Oncoimmunology 2012; 1:75-7; PMID:; http://dx.doi.org/ 10.4161/onci.1.1.17825 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217. Ming Lim C, Stephenson R, Salazar AM, Ferris RL. TLR3 agonists improve the immunostimulatory potential of cetuximab against EGFR head and neck cancer cells. Oncoimmunology 2013; 2:e24677; PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 218. Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, D'Haens G, Pintér T, Lim R, Bodoky G, et al. . Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009; 360:1408-17; PMID:; http://dx.doi.org/ 10.1056/NEJMoa0805019 [DOI] [PubMed] [Google Scholar]
  • 219. Tsuchihashi Z, Khambata-Ford S, Hanna N, Janne PA. Responsiveness to cetuximab without mutations in EGFR. N Engl J Med 2005; 353:208-9; PMID:; http://dx.doi.org/ 10.1056/NEJM200507143530218 [DOI] [PubMed] [Google Scholar]
  • 220. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, et al. . Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004; 351:337-45; PMID:; http://dx.doi.org/ 10.1056/NEJMoa033025 [DOI] [PubMed] [Google Scholar]
  • 221. Chu F, Neelapu SS. Anti-PD-1 antibodies for the treatment of B-cell lymphoma: Importance of PD-1 T-cell subsets. Oncoimmunology 2014; 3:e28101; PMID:; http://dx.doi.org/ 10.4161/onci.28101 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 222. Mavilio D, Lugli E. Inhibiting the inhibitors: Checkpoints blockade in solid tumors. Oncoimmunology 2013; 2:e26535; PMID:; http://dx.doi.org/ 10.4161/onci.26535 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 223. Munir S, Andersen GH, Svane IM, Andersen MH. The immune checkpoint regulator PD-L1 is a specific target for naturally occurring CD4 T cells. Oncoimmunology 2013; 2:e23991; PMID:; http://dx.doi.org/ 10.4161/onci.23991 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 224. Zitvogel L, Kroemer G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology 2012; 1:1223-5; PMID:; http://dx.doi.org/ 10.4161/onci.21335 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, Fu YX. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 2014; 124:687-95; PMID:; http://dx.doi.org/ 10.1172/JCI67313 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226. Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L, et al. . Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2012; 1:1323-43; PMID:; http://dx.doi.org/ 10.4161/onci.22009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 227. Senovilla L, Aranda F, Galluzzi L, Kroemer G. Impact of myeloid cells on the efficacy of anticancer chemotherapy. Curr Opin Immunol 2014; 30C:24-31; PMID:; http://dx.doi.org/ 10.1016/j.coi.2014.05.009 [DOI] [PubMed] [Google Scholar]
  • 228. Dannenmann SR, Thielicke J, Stockli M, Matter C, von Boehmer L, Cecconi V, Hermanns T, Hefermehl L, Schraml P, Moch H, et al. . Tumor-associated macrophages subvert T-cell function and correlate with reduced survival in clear cell renal cell carcinoma. Oncoimmunology 2013; 2:e23562; PMID:; http://dx.doi.org/ 10.4161/onci.23562 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 229. Edin S, Wikberg ML, Oldenborg PA, Palmqvist R. Macrophages: Good guys in colorectal cancer. Oncoimmunology 2013; 2:e23038; PMID:; http://dx.doi.org/ 10.4161/onci.23038 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 230. Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, et al. . Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 2013; 24:589-602; PMID:; http://dx.doi.org/ 10.1016/j.ccr.2013.09.014 [DOI] [PubMed] [Google Scholar]
  • 231. Blagosklonny MV. Immunosuppressants in cancer prevention and therapy. Oncoimmunology 2013; 2:e26961; PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 232. Nam HY, Han MW, Chang HW, Lee YS, Lee M, Lee HJ, Lee KE, Jung MK, Jeon H, Choi SH, et al. . Radioresistant cancer cells can be conditioned to enter senescence by mTOR inhibition. Cancer Res 2013; 73:4267-77; PMID:; http://dx.doi.org/ 10.1158/0008-5472.CAN-12-3516 [DOI] [PubMed] [Google Scholar]
  • 233. Ma Y, Galluzzi L, Zitvogel L, Kroemer G. Autophagy and cellular immune responses. Immunity 2013; 39:211-27; PMID:; http://dx.doi.org/ 10.1016/j.immuni.2013.07.017 [DOI] [PubMed] [Google Scholar]
  • 234. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, et al. . Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334:1573-7; PMID:; http://dx.doi.org/ 10.1126/science.1208347 [DOI] [PubMed] [Google Scholar]
  • 235. Zeng H, Chi H. The interplay between regulatory T cells and metabolism in immune regulation. Oncoimmunology 2013; 2:e26586; PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 236. Sakuishi K, Ngiow SF, Sullivan JM, Teng MW, Kuchroo VK, Smyth MJ, Anderson AC. TIM3FOXP3 regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer. Oncoimmunology 2013; 2:e23849; PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 237. Thomas-Schoemann A, Batteux F, Alexandre J. A new strategy to target regulatory T cells in solid tumors. Oncoimmunology 2013; 2:e23338; PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 238. Bos PD, Plitas G, Rudra D, Lee SY, Rudensky AY. Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. J Exp Med 2013; 210:2435-66; PMID:; http://dx.doi.org/ 10.1084/jem.20130762 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 239. Vacchelli E, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulatory cytokines. Oncoimmunology 2013; 2:e24850; PMID:; http://dx.doi.org/ 10.4161/onci.24850 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 240. Vacchelli E, Aranda F, Obrist F, Eggermont A, Galon J, Cremer I, Zitvogel L, Kroemer G, Galluzzi L, et al. . Trial watch: Immunostimulatory cytokines in cancer therapy. Oncoimmunology 2014; 3:e29030; PMID:; http://dx.doi.org/ 10.4161/onci.29030 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 241. Liu SC, Tsang NM, Chiang WC, Chang KP, Hsueh C, Liang Y, Juang JL, Chow KP, Chang YS. Leukemia inhibitory factor promotes nasopharyngeal carcinoma progression and radioresistance. J Clin Invest 2013; 123:5269-83; PMID:; http://dx.doi.org/ 10.1172/JCI63428 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 242. de Lau W, Barker N, Low TY, Koo BK, Li VS, Teunissen H, Kujala P, Haegebarth A, Peters PJ, van de Wetering M, et al. . Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 2011; 476:293-7; PMID:; http://dx.doi.org/ 10.1038/nature10337 [DOI] [PubMed] [Google Scholar]
  • 243. Kronke G, Uderhardt S, Kim KA, Stock M, Scholtysek C, Zaiss MM, Surmann-Schmitt C, Luther J, Katzenbeisser J, David JP, et al. . R-spondin 1 protects against inflammatory bone damage during murine arthritis by modulating the Wnt pathway. Arthritis Rheum 2010; 62:2303-12; PMID: [DOI] [PubMed] [Google Scholar]
  • 244. Ootani A, Li X, Sangiorgi E, Ho QT, Ueno H, Toda S, Sugihara H, Fujimoto K, Weissman IL, Capecchi MR, et al. . Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 2009; 15:701-6; PMID:; http://dx.doi.org/ 10.1038/nm.1951 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245. Zhou WJ, Geng ZH, Spence JR, Geng JG. Induction of intestinal stem cells by R-spondin 1 and Slit2 augments chemoradioprotection. Nature 2013; 501:107-11; PMID:; http://dx.doi.org/ 10.1038/nature12416 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 246. Gerber SA, Lim JY, Connolly KA, Sedlacek AL, Barlow ML, Murphy SP, Egilmez NK, Lord EM. Radio-responsive tumors exhibit greater intratumoral immune activity than nonresponsive tumors. Int J Cancer 2014; 134:2383-92; PMID:; http://dx.doi.org/ 10.1002/ijc.28558 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 247. Sharma A, Bode B, Studer G, Moch H, Okoniewski M, Knuth A, von Boehmer L, van den Broek M. Radiotherapy of human sarcoma promotes an intratumoral immune effector signature. Clin Cancer Res 2013; 19:4843-53; PMID:; http://dx.doi.org/ 10.1158/1078-0432.CCR-13-0352 [DOI] [PubMed] [Google Scholar]
  • 248. Spary LK, Al-Taei S, Salimu J, Cook AD, Ager A, Watson HA, Clayton A, Staffurth J, Mason MD, Tabi Z. Enhancement of T cell responses as a result of synergy between lower doses of radiation and T cell stimulation. J Immunol 2014; 192:3101-10; PMID:; http://dx.doi.org/ 10.4049/jimmu-nol.1302736 [DOI] [PubMed] [Google Scholar]
  • 249. Eke I, Storch K, Krause M, Cordes N. Cetuximab attenuates its cytotoxic and radiosensitizing potential by inducing fibronectin biosynthesis. Cancer Res 2013; 73:5869-79; PMID:; http://dx.doi.org/ 10.1158/0008-5472.CAN-13-0344 [DOI] [PubMed] [Google Scholar]
  • 250. Goldberg RM. Cetuximab. Nat Rev Drug Discov 2005; Suppl:S10-1; PMID:; http://dx.doi.org/ 10.1038/nrd1728 [DOI] [PubMed] [Google Scholar]
  • 251. Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004; 3:391-400; PMID:; http://dx.doi.org/ 10.1038/nrd1381 [DOI] [PubMed] [Google Scholar]
  • 252. Michielsen AJ, Ryan EJ, O'Sullivan JN. Dendritic cell inhibition correlates with survival of colorectal cancer patients on bevacizumab treatment. Oncoimmunology 2012; 1:1445-7; PMID:; http://dx.doi.org/ 10.4161/onci.21318 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 253. Mansfield AS, Nevala WK, Lieser EA, Leontovich AA, Markovic SN. The immunomodulatory effects of bevacizumab on systemic immunity in patients with metastatic melanoma. Oncoimmunology 2013; 2:e24436; PMID:; http://dx.doi.org/ 10.4161/onci.24436 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 254. Margolin K, Ernstoff MS, Hamid O, Lawrence D, McDermott D, Puzanov I, Wolchok JD, Clark J, Sznol M, Logan TF, et al. . Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol 2012; 13:459-65; PMID:; http://dx.doi.org/ 10.1016/S1470-2045(12)70090-6 [DOI] [PubMed] [Google Scholar]
  • 255. Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, Sebastian M, Neal J, Lu H, Cuillerot JM, et al. . Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol 2012; 30:2046-54; PMID:; http://dx.doi.org/ 10.1200/JCO.2011.38.4032 [DOI] [PubMed] [Google Scholar]
  • 256. Madan RA, Heery CR, Gulley JL. Combination of vaccine and immune checkpoint inhibitor is safe with encouraging clinical activity. Oncoimmunology 2012; 1:1167-8; PMID:; http://dx.doi.org/ 10.4161/onci.20591 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 257. Demaria S, Pilones KA, Formenti SC, Dustin ML. Exploiting the stress response to radiation to sensitize poorly immunogenic tumors to anti-CTLA-4 treatment. Oncoimmunology 2013; 2:e23127; PMID:; http://dx.doi.org/ 10.4161/onci.23127 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 258. Vacchelli E, Galluzzi L, Eggermont A, Galon J, Tartour E, Zitvogel L, Kroemer G. Trial Watch: Immunostimulatory cytokines. Oncoimmunology 2012; 1:493-506; PMID:; http://dx.doi.org/ 10.4161/onci.20459 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 259. Vacchelli E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Toll-like receptor agonists for cancer therapy. Oncoimmunology 2013; 2:e25238; PMID:; http://dx.doi.org/ 10.4161/onci.25238 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 260. Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I, Henrik Ter Meulen J, Zitvogel L, Kroemer G, et al. . Trial Watch: Toll-like receptor agonists in oncological indications. Oncoimmunology 2014; 3:e29179; PMID:; http://dx.doi.org/ 10.4161/onci.29179 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 261. Chew V, Abastado JP. Immunomodulation of the tumor microenvironment by Toll-like receptor-3 (TLR3) ligands. Oncoimmunology 2013; 2:e23493; PMID:; http://dx.doi.org/ 10.4161/onci.23493 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 262. Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Fridman WH, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: DNA vaccines for cancer therapy. Oncoimmunology 2014; 3:28185; http://dx.doi.org/ 10.4161/onci.28185 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 263. Kallen KJ, Thess A. A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Ther Adv Vaccines 2014; 2:10-31; PMID:; http://dx.doi.org/ 10.1177/2051013613508729 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 264. Kallen KJ, Heidenreich R, Schnee M, Petsch B, Schlake T, Thess A, Baumhof P, Scheel B, Koch SD, Fotin-Mleczek M. A novel, disruptive vaccination technology: self-adjuvanted RNActive((R)) vaccines. Hum Vaccin Immunother 2013; 9:2263-76; PMID:; http://dx.doi.org/ 10.4161/hv.25181 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 265. Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2012; 1:1111-34; PMID:; http://dx.doi.org/ 10.4161/onci.21494 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 266. Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fucikova J, Cremer I, Galon J, Tartour E, Zitvogel L, Kroemer G, et al. . Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2013; 2:e25771; PMID:; http://dx.doi.org/ 10.4161/onci.25771 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 267. Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. Lancet 2008; 371:1695-709; PMID:; http://dx.doi.org/ 10.1016/S0140-6736(08)60728-X [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 268. Brizel DM, Esclamado R. Concurrent chemoradiotherapy for locally advanced, nonmetastatic, squamous carcinoma of the head and neck: consensus, controversy, and conundrum. J Clin Oncol 2006; 24:2612-7; PMID:; http://dx.doi.org/ 10.1200/JCO.2005.05.2829 [DOI] [PubMed] [Google Scholar]
  • 269. Garden AS, Harris J, Trotti A, Jones CU, Carrascosa L, Cheng JD, Spencer SS, Forastiere A, Weber RS, Ang KK. Long-term results of concomitant boost radiation plus concurrent cisplatin for advanced head and neck carcinomas: a phase II trial of the radiation therapy oncology group (RTOG 99-14). Int J Radiat Oncol Biol Phys 2008; 71:1351-5; PMID:; http://dx.doi.org/ 10.1016/j.ijrobp.2008.04.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 270. Nuyts S, Dirix P, Clement PM, Poorten VV, Delaere P, Schoenaers J, Hermans R, Van den Bogaert W. Impact of adding concomitant chemotherapy to hyperfractionated accelerated radiotherapy for advanced head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2009; 73:1088-95; PMID:; http://dx.doi.org/ 10.1016/j.ijrobp.2008.05.042 [DOI] [PubMed] [Google Scholar]
  • 271. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene 2012; 31:1869-83; PMID:; http://dx.doi.org/ 10.1038/onc.2011.384 [DOI] [PubMed] [Google Scholar]
  • 272. Bosset JF, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, Daban A, Bardet E, Beny A, Ollier JC, et al. . Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med 2006; 355:1114-23; PMID:; http://dx.doi.org/ 10.1056/NEJMoa060829 [DOI] [PubMed] [Google Scholar]
  • 273. Schmoll HJ, Van Cutsem E, Stein A, Valentini V, Glimelius B, Haustermans K, Nordlinger B, van de Velde CJ, Balmana J, Regula J, et al. . ESMO Consensus Guidelines for management of patients with colon and rectal cancer. a personalized approach to clinical decision making. Ann Oncol 2012; 23:2479-516; PMID:; http://dx.doi.org/ 10.1093/annonc/mds236 [DOI] [PubMed] [Google Scholar]
  • 274. Van Cutsem E, Borras JM, Castells A, Ciardiello F, Ducreux M, Haq A, Schmoll HJ, Tabernero J. Improving outcomes in colorectal cancer: Where do we go from here? Eur J Cancer 2013; 49(11):2476-85:in press; PMID:; http://dx.doi.org/ 10.1016/j.ejca.2013.03.026 [DOI] [PubMed] [Google Scholar]
  • 275. Vacchelli E, Prada N, Kepp O, Galluzzi L. Current trends of anticancer immunochemotherapy. Oncoimmunology 2013; 2:e25396; PMID:; http://dx.doi.org/ 10.4161/onci.25396 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 276. Anitei MG, Zeitoun G, Mlecnik B, Marliot F, Haicheur N, Todosi AM, Kirilovsky A, Lagorce C, Bindea G, Ferariu D, et al. . Prognostic and predictive values of the immunoscore in patients with rectal cancer. Clin Cancer Res 2014; 20:1891-9; PMID:; http://dx.doi.org/ 10.1158/1078-0432.CCR-13-2830 [DOI] [PubMed] [Google Scholar]
  • 277. Zitvogel L, Tanchot C, Granier C, Tartour E. Following up tumor-specific regulatory T cells in cancer patients. Oncoimmunology 2013; 2:e25444; PMID:; http://dx.doi.org/ 10.4161/onci.25444 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 278. Donskov F. Immunomonitoring and prognostic relevance of neutrophils in clinical trials. Semin Cancer Biol 2013; 23:200-7; PMID:; http://dx.doi.org/ 10.1016/j.semcancer.2013.02.001 [DOI] [PubMed] [Google Scholar]
  • 279. Kojouharov BM, Brackett CM, Veith JM, Johnson CP, Gitlin II, Toshkov IA, Gleiberman AS, Gudkov AV, Burdelya LG, et al. . Toll-like receptor-5 agonist Entolimod broadens the therapeutic window of 5-fluorouracil by reducing its toxicity to normal tissues in mice. Oncotarget 2014; 5:802-14; PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 280. Gujar SA, Clements D, Lee PW. Two is better than one: Complementing oncolytic virotherapy with gemcitabine to potentiate antitumor immune responses. Oncoimmunology 2014; 3:e27622; PMID:; http://dx.doi.org/ 10.4161/onci.27622 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 281. Waldron TJ, Quatromoni JG, Karakasheva TA, Singhal S, Rustgi AK. Myeloid derived suppressor cells: Targets for therapy. Oncoimmunology 2013; 2:e24117; PMID:; http://dx.doi.org/ 10.4161/onci.24117 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 282. Ziccheddu G, Proietti E, Moschella F. The Janus face of cyclophosphamide: A sterile inflammatory response that potentiates cancer immunotherapy. Oncoimmunology 2013; 2:e25789; PMID:; http://dx.doi.org/ 10.4161/onci.25789 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 283. Walter S, Weinschenk T, Reinhardt C, Singh-Jasuja H. Single-dose cyclophosphamide synergizes with immune responses to the renal cell cancer vaccine IMA901. Oncoimmunology 2013; 2:e22246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 284. Aranda F, Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Peptide vaccines in cancer therapy. Oncoimmunology 2013; 2:e26621; PMID:; http://dx.doi.org/ 10.4161/onci.26621 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 285. Aranda F, Vacchelli E, Eggermont A, Galon J, Fridman WH, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulatory monoclonal antibodies in cancer therapy. Oncoimmunology 2014; 3:e27297; PMID:; http://dx.doi.org/ 10.4161/onci.27297 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Oncoimmunology are provided here courtesy of Taylor & Francis

RESOURCES