Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1975 Dec;8(6):617–626. doi: 10.1128/aac.8.6.617

Inhibitory Effect of Colicin E2 on Transport Systems of Escherichia coli in the Presence of the rex Gene of λ Prophage

Teruhiko Beppu 1, Hirokazu Yamamoto 1, Kei Arima 1
PMCID: PMC429437  PMID: 1108779

Abstract

Purified colicin E2 was found to cause marked inhibition of the permeation rate of o-nitrophenyl-galactoside (ONPG) in several λ-lysogenic strains of Escherichia coli in the presence of chloramphenicol to prevent prophage induction. The inhibitory effect of colicin E2 on transport systems was analyzed with cells of E. coli CP78(λ). The dose of colicin E2 for the half-maximum inhibition of the ONPG-permeation rate was about 9 molecules of the colicin per bacterium under the aerobic condition, which corresponded to about 1 killing unit per bacterium. Kinetics of the transport of [14C]methylthiogalactoside suggested that colicin E2 began to inhibit the influx rate of β-galactosides within a few minutes after the colicin addition, and the maximum inhibition reached more than 80%. Extensive leakage of intracellular potassium ion and inhibition of l-proline transport also occurred at the same time. Acid solubilization of cellular deoxyribonucleic acid by the colicin was apparently delayed to the initiation of the transport inhibition. The extents of the inhibition of β-galactoside transport and leakage of potassium ion by the colicin were extensive in cells lysogenic for wild λ phage or λind, whereas the extents were slight in the nonlysogenic cells or cells carrying λrex prophage. It was concluded that the sensitization of membrane transport systems of E. coli cells to colicin E2 was achieved by the presence of the rex gene product of λ phage.

Full text

PDF
617

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almendinger R., Hager L. P. Reconstitution of colicin E2-induced deoxyribonucleic acid degradation in spheroplast preparations. Antimicrob Agents Chemother. 1973 Aug;4(2):167–177. doi: 10.1128/aac.4.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Almendinger R., Hager L. P. Role for endonuclease I in the transmission process of colicin E 2 . Nat New Biol. 1972 Feb 16;235(59):199–203. doi: 10.1038/newbio235199a0. [DOI] [PubMed] [Google Scholar]
  3. Beppu T., Kawabata K., Arima K. Specific inhibition of cell division by colicin E 2 without degradation of deoxyribonucleic acid in a new colicin sensitivity mutant of Escherichia coli. J Bacteriol. 1972 May;110(2):485–493. doi: 10.1128/jb.110.2.485-493.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boon T. Inactivation of ribosomes in vitro by colicin E 3 . Proc Natl Acad Sci U S A. 1971 Oct;68(10):2421–2425. doi: 10.1073/pnas.68.10.2421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boon T. Inactivation of ribosomes in vitro by colicin E 3 and its mechanism of action. Proc Natl Acad Sci U S A. 1972 Mar;69(3):549–552. doi: 10.1073/pnas.69.3.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bowman C. M., Sidikaro J., Nomura M. Specific inactivation of ribosomes by colicin E3 in vitro and mechanism of immunity in colicinogenic cells. Nat New Biol. 1971 Dec 1;234(48):133–137. doi: 10.1038/newbio234133a0. [DOI] [PubMed] [Google Scholar]
  7. Buller C. S., Astrachan L. Replication of T4rII bacteriophage in Escherichia coli K-12 (lambda). J Virol. 1968 Apr;2(4):298–307. doi: 10.1128/jvi.2.4.298-307.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carter J. R., Fox C. F., Kennedy E. P. Interaction of sugars with the membrane protein component of the lactose transport system of Escherichia coli. Proc Natl Acad Sci U S A. 1968 Jun;60(2):725–732. doi: 10.1073/pnas.60.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Christensen J. R., Geiman J. M. A new effect of the rex gene of phage lambda: premature lysis after infection by phage T1. Virology. 1973 Nov;56(1):285–290. doi: 10.1016/0042-6822(73)90306-1. [DOI] [PubMed] [Google Scholar]
  10. Fields K. L., Luria S. E. Effects of colicins E1 and K on transport systems. J Bacteriol. 1969 Jan;97(1):57–63. doi: 10.1128/jb.97.1.57-63.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GAREN A. Physiological effects of rII mutations in bacteriophage T4. Virology. 1961 Jun;14:151–163. doi: 10.1016/0042-6822(61)90190-8. [DOI] [PubMed] [Google Scholar]
  12. Gussin G. N., Peterson V. Isolation and properties of rex - mutants of bacteriophage lambda. J Virol. 1972 Oct;10(4):760–765. doi: 10.1128/jvi.10.4.760-765.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Herschman H. R., Helinski D. R. Purification and characterization of colicin E2 and colicin E3. J Biol Chem. 1967 Nov 25;242(22):5360–5368. [PubMed] [Google Scholar]
  14. Holland E. M., Holland I. B. Kinetics of colicin E2-induced solubilization and fragmentation of Escherichia coli DNA in vivo. Biochim Biophys Acta. 1972 Oct 11;281(2):179–191. doi: 10.1016/0005-2787(72)90170-0. [DOI] [PubMed] [Google Scholar]
  15. Howard B. D. Phage lambda mutants deficient in r-II exclusion. Science. 1967 Dec 22;158(3808):1588–1589. doi: 10.1126/science.158.3808.1588. [DOI] [PubMed] [Google Scholar]
  16. Hull R. R., Reeves P. Sensitivity of intracellular bacteriophage lambda to colicin CA42-E2. J Virol. 1971 Oct;8(4):355–362. doi: 10.1128/jvi.8.4.355-362.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lusk J. E., Nelson D. L. Effects of colicins E1 and K on permeability to magnesium and cobaltous ions. J Bacteriol. 1972 Oct;112(1):148–160. doi: 10.1128/jb.112.1.148-160.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. NOMURA M. MECHANISM OF ACTION OF COLICINES. Proc Natl Acad Sci U S A. 1964 Dec;52:1514–1521. doi: 10.1073/pnas.52.6.1514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nose K., Mizuno D. Restrictive effect of prophage lambda on DNA degradation in Escherichia coli cells. Biochim Biophys Acta. 1971 Aug 12;246(1):20–28. doi: 10.1016/0005-2787(71)90068-2. [DOI] [PubMed] [Google Scholar]
  20. Osumi Y., Imahori K. Studies on a factor enhancing colicin E3 activity in vitro. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4062–4066. doi: 10.1073/pnas.71.10.4062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ringrose P. S. Interaction between colicin E2 and DNA in vitro. FEBS Lett. 1972 Jun 15;23(2):241–243. doi: 10.1016/0014-5793(72)80351-x. [DOI] [PubMed] [Google Scholar]
  22. Saxe L. S. Reduction of colicin E2-induced DNA breakdown by the rex gene of lambda prophage. Virology. 1974 Jul;60(1):288–292. doi: 10.1016/0042-6822(74)90387-0. [DOI] [PubMed] [Google Scholar]
  23. Saxe L. S. The action of colicin E2 on supercoiled lambda DNA. I. Experiments in vivo. Biochemistry. 1975 May 20;14(10):2051–2057. doi: 10.1021/bi00681a003. [DOI] [PubMed] [Google Scholar]
  24. Saxe L. S. The action of colicin E2 on supercoiled lambda DNA.II. Experiments in vitro. Biochemistry. 1975 May 20;14(10):2058–2063. doi: 10.1021/bi00681a004. [DOI] [PubMed] [Google Scholar]
  25. Schwartz S. A., Helinski D. R. Purification and characterization of colicin E1. J Biol Chem. 1971 Oct 25;246(20):6318–6327. [PubMed] [Google Scholar]
  26. Sekiguchi M. Studies on the physiological defect in rII mutants of bacteriophage T4. J Mol Biol. 1966 Apr;16(2):503–522. doi: 10.1016/s0022-2836(66)80188-2. [DOI] [PubMed] [Google Scholar]
  27. Takagaki Y., Kunugita K., Matsuhashi M. Evidence for the direct action of colicin K on aerobic 32 P i uptake in Escherichia coli in vivo and in vitro. J Bacteriol. 1973 Jan;113(1):42–50. doi: 10.1128/jb.113.1.42-50.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thirion J. P., Hofnung M. On some genetic aspects of phage lambda resistance in E. coli K12. Genetics. 1972 Jun;71(2):207–216. doi: 10.1093/genetics/71.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES