Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1976 Feb;9(2):224–232. doi: 10.1128/aac.9.2.224

Biogenetic Origin of the d-Isoleucine and N-Methyl-l-Alloisoleucine Residues in the Actinomycins

Takehiko Yajima a,1, Kaarin Mason a, Edward Katz a
PMCID: PMC429508  PMID: 57739

Abstract

Studies with 14C-labeled isoleucine stereisomers have established that l-alloisoleucine, d-alloisoleucine, and d-isoleucine may function as precursors for the biogenesis of d-isoleucine and N-methyl-l-alloisoleucine residues in actinomycin. l-[14C]isoleucine appears to be employed chiefly for d-alloisoleucine (and N-methylisoleucine [?] formation); however, its role in the biosynthesis of d-isoleucine and N-methylalloisoleucine remains unclear. The potential pathway of biosynthesis of d-isoleucine and N-methyl-l-isoleucine is discussed.

Full text

PDF
224

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBERTINI A., CASSANI G., CIFERRI O. INCORPORATION OF L-ISOLEUCINE AND L-THREONINE INTO THE ACTINOMYCINS SYNTHESIZED BY STREPTOMYCES ANTIBIOTICUS. Biochim Biophys Acta. 1964 Apr 27;80:655–664. doi: 10.1016/0926-6550(64)90310-x. [DOI] [PubMed] [Google Scholar]
  2. BODANSZKY M., PERLMAN D. ARE PEPTIDE ANTIBIOTICS SMALL PROTEINS? Nature. 1964 Nov 28;204:840–844. doi: 10.1038/204840a0. [DOI] [PubMed] [Google Scholar]
  3. Bodanszky M., Perlman D. Origin of D-amino-acids in microbial peptides: rule of alpha-epimerization. Nature. 1968 Apr 20;218(5138):291–292. doi: 10.1038/218291a0. [DOI] [PubMed] [Google Scholar]
  4. Brady L. R. Toxins of higher fungi. Lloydia. 1975 Jan-Feb;38(1):36–56. [PubMed] [Google Scholar]
  5. Bycroft B. W. Structural relationships in microbial peptides. Nature. 1969 Nov 8;224(5219):595–597. doi: 10.1038/224595a0. [DOI] [PubMed] [Google Scholar]
  6. DIGIROLAMO M., CIFERRI O., DIGIROLAMO A. B., ALBERTINI A. EFFECT OF D-LEUCINE ON THE BIOSYNTHESIS OF POLYMIXIN D. J Biol Chem. 1964 Feb;239:502–507. [PubMed] [Google Scholar]
  7. Hook D. J., Vining L. C. Biosynthetic precursors of etamycin, a peptidolactone antibiotic from Streptomyces griseoviridus. Can J Biochem. 1973 Dec;51(12):1630–1637. doi: 10.1139/o73-219. [DOI] [PubMed] [Google Scholar]
  8. KATZ E., GOSS W. A. Controlled biosynthesis of actinomycin with sarcosine. Biochem J. 1959 Nov;73:458–465. doi: 10.1042/bj0730458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KATZ E. Influence of valine, isoleucine, and related compounds on actinomycin synthesis. J Biol Chem. 1960 Apr;235:1090–1094. [PubMed] [Google Scholar]
  10. KATZ E., PIENTA P., SIVAK A. The role of nutrition in the synthesis of actinomycin. Appl Microbiol. 1958 Jul;6(4):236–241. doi: 10.1128/am.6.4.236-241.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KATZ E., WALDRON C. R., MELONI M. L. Role of valine and isoleucine as regulators of actinomycin peptide formation by Streptomyces chrysomallus. J Bacteriol. 1961 Oct;82:600–608. doi: 10.1128/jb.82.4.600-608.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KATZ E., WEISSBACH H. Incorporation of C14-labeled amino acids into actinomycin and protein by Streptomyces antibioticus. J Biol Chem. 1963 Feb;238:666–675. [PubMed] [Google Scholar]
  13. Katz E., Kawai Y., Jun'ichi S. Configuration of the N-methylisoleucine in the actinomycins. Biochem Biophys Res Commun. 1971 Jun 4;43(5):1035–1039. doi: 10.1016/0006-291x(71)90566-3. [DOI] [PubMed] [Google Scholar]
  14. Lipmann F., Gevers W., Kleinkauf H., Roskoski R., Jr Polypeptide synthesis on protein templates: the enzymatic synthesis of gramicidin S and tyrocidine. Adv Enzymol Relat Areas Mol Biol. 1971;35:1–34. doi: 10.1002/9780470122808.ch1. [DOI] [PubMed] [Google Scholar]
  15. MACDONALD J. C. Biosynthesis of valinomycin. Can J Microbiol. 1960 Feb;6:27–34. doi: 10.1139/m60-005. [DOI] [PubMed] [Google Scholar]
  16. Manning J. M., Moore S. Determination of D- and L-amino acids by ion exchange chromatography as L-D and L-L dipeptides. J Biol Chem. 1968 Nov 10;243(21):5591–5597. [PubMed] [Google Scholar]
  17. Mauger A. B. Peptide antibiotic biosynthesis: a new approach. Experientia. 1968 Oct 15;24(10):1068–1072. doi: 10.1007/BF02138755. [DOI] [PubMed] [Google Scholar]
  18. SALZMAN L. A., KATZ E., WEISSBACH H. STUDIES ON THE MECHANISM OF SYNTHESIS OF D-VALINE BY STREPTOMYCES ANTIBIOTICUS. J Biol Chem. 1964 Jun;239:1864–1866. [PubMed] [Google Scholar]
  19. SIVAK A., MELONI M. L., NOBILI F., KATZ E. Biosynthesis of the actinomycin chromophore. Studies with DL-[7alpha-14C] tryptophan and L-[Me-14C] methionine. Biochim Biophys Acta. 1962 Feb 26;57:283–289. doi: 10.1016/0006-3002(62)91121-6. [DOI] [PubMed] [Google Scholar]
  20. Schleifer K. H., Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972 Dec;36(4):407–477. doi: 10.1128/br.36.4.407-477.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Snoke J. E. FORMATION OF BACITRACIN BY PROTOPLASTS OF BACILLUS LICHENIFORMIS. J Bacteriol. 1961 Jun;81(6):986–989. doi: 10.1128/jb.81.6.986-989.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Troy F. A. Chemistry and biosynthesis of the poly( -D-glutamyl) capsule in Bacillus licheniformis. I. Properties of the membrane-mediated biosynthetic reaction. J Biol Chem. 1973 Jan 10;248(1):305–315. [PubMed] [Google Scholar]
  23. Yajim T., Mason K. T., Kaltz E. Branched-chain amino acid substitutions in the biosynthesis of the antibiotic actinomycin. Antimicrob Agents Chemother. 1975 Jun;7(6):773–780. doi: 10.1128/aac.7.6.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yajima T., Grigg M. A., Katz E. Biosynthesis of antibiotic peptides with isoleucine stereoisomers. Arch Biochem Biophys. 1972 Aug;151(2):565–575. doi: 10.1016/0003-9861(72)90534-6. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES