Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jan 4;91(1):385–389. doi: 10.1073/pnas.91.1.385

Cellular adaptation to opiates alters ion-channel mRNA levels.

S A Mackler 1, J H Eberwine 1
PMCID: PMC42952  PMID: 7506420

Abstract

The chronic use of several drugs, including opiates, results in the stereotypical behaviors characteristic of addiction. Alterations in gene expression have been associated with the use of these addictive drugs. Previous studies, however, have been limited to describing changes in amounts of individual mRNAs from single tissue samples. Cellular adaptation to opiates, reflected in the regulation of the expression of many different mRNAs, seems likely to contribute to the complicated behaviors of addiction. The present studies examined coordinate alterations in the amounts of multiple mRNAs in the rat striatum and in NG108-15 cells after opioid stimulation or the precipitated withdrawal of opioid use. The experimental approach combined amplification of the poly(A)+ RNA population with reverse Northern blot analysis to simultaneously characterize the relative changes in several mRNAs. Morphine treatment of rats for 5 days was associated with a reduction in the amount of striatal RNA for the voltage-sensitive K+ channel without significant changes in other ion channels. In NG108-15 cells stimulation with the delta-opiate receptor agonist [D-Ala2,D-Leu5]enkephalin (DADLE) alone and followed by naloxone (precipitated withdrawal) caused relative changes in the abundances of several mRNAs. The composite effects of alterations in the abundance of multiple mRNAs (and the proteins they encode) in response to opioid use likely contribute to the development and maintenance of opiate-mediated behaviors.

Full text

PDF
385

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cathala G., Savouret J. F., Mendez B., West B. L., Karin M., Martial J. A., Baxter J. D. A method for isolation of intact, translationally active ribonucleic acid. DNA. 1983;2(4):329–335. doi: 10.1089/dna.1983.2.329. [DOI] [PubMed] [Google Scholar]
  2. Chang S. L., Squinto S. P., Harlan R. E. Morphine activation of c-fos expression in rat brain. Biochem Biophys Res Commun. 1988 Dec 15;157(2):698–704. doi: 10.1016/s0006-291x(88)80306-1. [DOI] [PubMed] [Google Scholar]
  3. Christie M. J., Williams J. T., North R. A. Cellular mechanisms of opioid tolerance: studies in single brain neurons. Mol Pharmacol. 1987 Nov;32(5):633–638. [PubMed] [Google Scholar]
  4. Cox B. M., Osman O. H. Inhibition of the development of tolerance to morphine in rats by drugs which inhibit ribonucleic acid or protein synthesis. Br J Pharmacol. 1970 Jan;38(1):157–170. doi: 10.1111/j.1476-5381.1970.tb10344.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dash P. K., Hochner B., Kandel E. R. Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature. 1990 Jun 21;345(6277):718–721. doi: 10.1038/345718a0. [DOI] [PubMed] [Google Scholar]
  6. Eberwine J., Spencer C., Miyashiro K., Mackler S., Finnell R. Complementary DNA synthesis in situ: methods and applications. Methods Enzymol. 1992;216:80–100. doi: 10.1016/0076-6879(92)16011-8. [DOI] [PubMed] [Google Scholar]
  7. Guitart X., Hayward M., Nisenbaum L. K., Beitner-Johnson D. B., Haycock J. W., Nestler E. J. Identification of MARPP-58, a morphine- and cyclic AMP-regulated phosphoprotein of 58 kDa, as tyrosine hydroxylase: evidence for regulation of its expression by chronic morphine in the rat locus coeruleus. J Neurosci. 1990 Aug;10(8):2649–2659. doi: 10.1523/JNEUROSCI.10-08-02649.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hayward M. D., Duman R. S., Nestler E. J. Induction of the c-fos proto-oncogene during opiate withdrawal in the locus coeruleus and other regions of rat brain. Brain Res. 1990 Aug 20;525(2):256–266. doi: 10.1016/0006-8993(90)90872-9. [DOI] [PubMed] [Google Scholar]
  9. Klee W. A., Nirenberg M. A neuroblastoma times glioma hybrid cell line with morphine receptors. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3474–3477. doi: 10.1073/pnas.71.9.3474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Law P. Y., Hom D. S., Loh H. H. Loss of opiate receptor activity in neuroblastoma X glioma NG108-15 hybrid cells after chronic opiate treatment. A multiple-step process. Mol Pharmacol. 1982 Jul;22(1):1–4. [PubMed] [Google Scholar]
  11. Law P. Y., Ungar H. G., Hom D. S., Loh H. H. Effects of cycloheximide and tunicamycin on opiate receptor activities in neuroblastoma X glioma NG108-15 hybrid cells. Biochem Pharmacol. 1985 Jan 1;34(1):9–17. doi: 10.1016/0006-2952(85)90093-0. [DOI] [PubMed] [Google Scholar]
  12. Lightman S. L., Young W. S., 3rd Corticotrophin-releasing factor, vasopressin and pro-opiomelanocortin mRNA responses to stress and opiates in the rat. J Physiol. 1988 Sep;403:511–523. doi: 10.1113/jphysiol.1988.sp017261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mackler S. A., Eberwine J. H. The molecular biology of addictive drugs. Mol Neurobiol. 1991 Spring;5(1):45–58. doi: 10.1007/BF02935612. [DOI] [PubMed] [Google Scholar]
  14. Nestler E. J. Molecular mechanisms of drug addiction. J Neurosci. 1992 Jul;12(7):2439–2450. doi: 10.1523/JNEUROSCI.12-07-02439.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. North R. A., Williams J. T. On the potassium conductance increased by opioids in rat locus coeruleus neurones. J Physiol. 1985 Jul;364:265–280. doi: 10.1113/jphysiol.1985.sp015743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sheng M., Greenberg M. E. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron. 1990 Apr;4(4):477–485. doi: 10.1016/0896-6273(90)90106-p. [DOI] [PubMed] [Google Scholar]
  17. Tao P. L., Law P. Y., Loh H. H. Decrease in delta and mu opioid receptor binding capacity in rat brain after chronic etorphine treatment. J Pharmacol Exp Ther. 1987 Mar;240(3):809–816. [PubMed] [Google Scholar]
  18. Tecott L. H., Barchas J. D., Eberwine J. H. In situ transcription: specific synthesis of complementary DNA in fixed tissue sections. Science. 1988 Jun 17;240(4859):1661–1664. doi: 10.1126/science.2454508. [DOI] [PubMed] [Google Scholar]
  19. Uhl G. R., Ryan J. P., Schwartz J. P. Morphine alters preproenkephalin gene expression. Brain Res. 1988 Sep 6;459(2):391–397. doi: 10.1016/0006-8993(88)90658-0. [DOI] [PubMed] [Google Scholar]
  20. Van Gelder R. N., von Zastrow M. E., Yool A., Dement W. C., Barchas J. D., Eberwine J. H. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1663–1667. doi: 10.1073/pnas.87.5.1663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Werz M. A., MacDonald R. L. Opioid peptides selective for mu- and delta-opiate receptors reduce calcium-dependent action potential duration by increasing potassium conductance. Neurosci Lett. 1983 Dec 2;42(2):173–178. doi: 10.1016/0304-3940(83)90402-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES