Abstract
The antibacterial drug nalidixic acid (Nal) can suppress the growth of Candida albicans at levels of the drug normally found in urine. Growth suppression increases as drug levels are increased, and Nal also causes a similar proportional inhibition of the synthesis of all cellular macromolecules. However, growth temperature (25 versus 37 C) and the divalent cations Mg2+ and Mn2+ can increase C. albicans resistance to Nal. Also, nitrogen depletion of Candida shows that Nal-treated and untreated cells exhibit no difference in leucine uptake during readaptation to nitrogen. In Nal-treated, nitrogen-starved cells, ribonucleic acid and deoxyribonucleic acid (DNA) biosynthesis are less affected than in unstarved Nal-treated cells, but of the two nucleic acids DNA synthesis is the most affected. Nal-resistant strains of C. albicans exhibit a slight toxicity for macromolecular synthesis. Nal treatment of a synchronized population of Saccharomyces cerevisiae results in an increase in the culture mean doubling time of, at most, 20%, but Nal causes the loss of synchronous cell division. With a synchronized population of Kluyveromyces lactis, Nal causes an increase in the mean doubling time of upwards of 300%, with synchrony of cell division being maintained. It is known that S. cerevisiae asynchronously synthesizes mitochondrial DNA during the cell cycle, whereas with K. lactis it is synchronous. Thus, with C. albicans Nal toxicity is dependent both on the dose and the physiological state of the cell. Furthermore, Nal inhibits growth of yeast with synchronous mitochondrial DNA synthesis more adversely than yeast with asynchronous mitochondrial DNA synthesis.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Binet A., Volfin P. Effect of the A23187 ionophore on mitochondrial membrane Mg2++ and Ca2+. FEBS Lett. 1975 Jan 1;49(3):400–403. doi: 10.1016/0014-5793(75)80795-2. [DOI] [PubMed] [Google Scholar]
- Bourguignon G. J., Levitt M., Sternglanz R. Studies on the mechanism of action of nalidixic acid. Antimicrob Agents Chemother. 1973 Oct;4(4):479–486. doi: 10.1128/aac.4.4.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Busbee D. L., Sarachek A. Inactivation of Candida albicans by ultraviolet radiation. Arch Mikrobiol. 1969;64(4):289–314. doi: 10.1007/BF00417011. [DOI] [PubMed] [Google Scholar]
- Cook T. M., Brown K. G., Boyle J. V., Goss W. A. Bactericidal action of nalidixic acid on Bacillus subtilis. J Bacteriol. 1966 Nov;92(5):1510–1514. doi: 10.1128/jb.92.5.1510-1514.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cook T. M., Deitz W. H., Goss W. A. Mechanism of action of nalidixic acid on Escherichia coli. IV. Effects on the stability of cellular constituents. J Bacteriol. 1966 Feb;91(2):774–779. doi: 10.1128/jb.91.2.774-779.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duffus J. H., Patterson L. J. Control of cell division in yeast using the ionophore, A23187 with calcium and magnesium. Nature. 1974 Oct 18;251(5476):626–627. doi: 10.1038/251626a0. [DOI] [PubMed] [Google Scholar]
- Ebringer L. The action of nalidixic acid on euglena plastids. J Gen Microbiol. 1970 Apr;61(1):141–144. doi: 10.1099/00221287-61-1-141. [DOI] [PubMed] [Google Scholar]
- Fukuhara H. Relative proportions of mitochondrial and nuclear DNA in yeast under various conditions of growth. Eur J Biochem. 1969 Nov;11(1):135–139. doi: 10.1111/j.1432-1033.1969.tb00750.x. [DOI] [PubMed] [Google Scholar]
- GOSS W. A., DEITZ W. H., COOK T. M. MECHANISM OF ACTION OF NALIDIXIC ACID ON ESCHERICHIA COLI.II. INHIBITION OF DEOXYRIBONUCLEIC ACID SYNTHESIS. J Bacteriol. 1965 Apr;89:1068–1074. doi: 10.1128/jb.89.4.1068-1074.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golombek J., Wolf W., Wintersberger E. DNA synthesis and DNA-polymerase activity in synchronized yeast cells. Mol Gen Genet. 1974;132(2):137–145. doi: 10.1007/BF00272179. [DOI] [PubMed] [Google Scholar]
- Gross V. J., Smith D. G. The effect of nalidixic acid on growth and petite formation in Saccharomyces cerevisiae. Microbios. 1972 Sep-Oct;6(22):139–146. [PubMed] [Google Scholar]
- Hamilton P. B., Rosi D., Peruzzotti G. P., Nielson E. D. Microbiological metabolism of naphthyridines. Appl Microbiol. 1969 Feb;17(2):237–241. doi: 10.1128/am.17.2.237-241.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartwell L. H. Periodic density fluctuation during the yeast cell cycle and the selection of synchronous cultures. J Bacteriol. 1970 Dec;104(3):1280–1285. doi: 10.1128/jb.104.3.1280-1285.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan D. M., Criddle R. S. Effects of antibiotic substances on the respiration of yeast grown in 1 percent glucose. Biochim Biophys Acta. 1970 Dec 29;222(3):611–620. doi: 10.1016/0304-4165(70)90187-x. [DOI] [PubMed] [Google Scholar]
- Luha A. A., Sarcoe L. E., Whittaker P. A. Biosynthesis of yeast mitochondria. Drug effects on the petite negative yeast kluyveromyces lactis. Biochem Biophys Res Commun. 1971 Jul 16;44(2):396–402. doi: 10.1016/0006-291x(71)90613-9. [DOI] [PubMed] [Google Scholar]
- Michaels C. A., Blamire J., Goldfinger B., Marmur J. Studies on the action of nalidixic acid in the yeast Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1973 May;3(5):562–567. doi: 10.1128/aac.3.5.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagley P., Linnane A. W. Mitochondrial DNA deficient petite mutants of yeast. Biochem Biophys Res Commun. 1970 Jun 5;39(5):989–996. doi: 10.1016/0006-291x(70)90422-5. [DOI] [PubMed] [Google Scholar]
- Russell A. D. Factors influencing the activity of antimicrobial agents: an appraisal. Microbios. 1974 Apr;10(38):151–174. [PubMed] [Google Scholar]
- Smith D., Tauro P., Schweizer E., Halvorson H. O. The replication of mitochondrial DNA during the cell cycle in Saccharomyces lactis. Proc Natl Acad Sci U S A. 1968 Jul;60(3):936–942. doi: 10.1073/pnas.60.3.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sobieski R. J., Olsen R. H. Cold-sensitive Pseudomonas RNA polymerase. I. Characterization of the host dependent cold-sensitive restriction of phage CB3. J Virol. 1973 Dec;12(6):1375–1383. doi: 10.1128/jvi.12.6.1375-1383.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wehr C. T., Kudrna R. D., Parks L. W. Effect of putative deoxyribonucleic acid inhibitors on macromolecular synthesis in Saccharomyces cerevisiae. J Bacteriol. 1970 Jun;102(3):636–641. doi: 10.1128/jb.102.3.636-641.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williamson D. H., Maroudas N. G., Wilkie D. Induction of the cytoplasmic petite mutation in Saccharomyces cerevisiae by the antibacterial antibiotics erythromycin and chloramphenicol. Mol Gen Genet. 1971;111(3):209–223. doi: 10.1007/BF00433106. [DOI] [PubMed] [Google Scholar]
- Williamson D. H., Moustacchi E. The synthesis of mitochondrial DNA during the cell cycle in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1971 Jan 22;42(2):195–201. doi: 10.1016/0006-291x(71)90087-8. [DOI] [PubMed] [Google Scholar]
- Williamson D. H. The timing of deoxyribonucleic acid synthesis in the cell cycle of Saccharomyces cerevisiae. J Cell Biol. 1965 Jun;25(3):517–528. doi: 10.1083/jcb.25.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winshell E. B., Rosenkranz H. S. Nalidixic Acid and the Metabolism of Escherichia coli. J Bacteriol. 1970 Dec;104(3):1168–1175. doi: 10.1128/jb.104.3.1168-1175.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
