Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1976 Apr;9(4):655–660. doi: 10.1128/aac.9.4.655

Salinomycin Effects on Mitochondrial Ion Translocation and Respiration

Mitsuaki Mitani 1,2, Tadashi Yamanishi 1,2, Yukio Miyazaki 1,2, Noboru Ōtake 1,2
PMCID: PMC429593  PMID: 131509

Abstract

The effects of salinomycin on alkali cation transport and membrane functions in rat liver mitochondria have been investigated. After potassium uptake, stimulated by valinomycin or monazomycin in the presence of adenosine 5′-triphosphate, salinomycin caused rapid release of K+ from mitochondria. Salinomycin reversed valinomycin- or monazomycin-induced oscillatory swelling of mitochondria preloaded with K+, Rb+, and Na+ but was without effect on Li+ or Cs+ preloaded mitochondria. Salinomycin blocked the retention of K+ more effectively than the retention of Rb+ or Na+. Salinomycin inhibited both coupled and uncoupled respiration with strict substrate specificity in medium of low but not in high K+ concentration. The oxidation of glutamate, α-ketoglutarate, and malate plus pyruvate was inhibited by salinomycin, but that of β-hydroxybutyrate or succinate was not significantly affected. Salinomycin inhibited adenosine triphosphatase activity of mitochondria induced by valinomycin or monazomycin in K+ and Rb+ medium without significantly affecting adenosine triphosphatase activity in Li+, Na+, or Cs+ medium. Oxidative phosphorylation in mitochondria was inhibited by salinomycin but the inhibitory effect of salinomycin lacked the substrate specificity observed for respiration. It is proposed that salinomycin perturbs mitochondrial functions by acting as a mobile carrier for alkali cations through membranes.

Full text

PDF
655

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashton R., Steinrauf L. K. Thermodynamic consideration of the ion transporting antibiotics. J Mol Biol. 1970 May 14;49(3):547–556. doi: 10.1016/0022-2836(70)90280-9. [DOI] [PubMed] [Google Scholar]
  2. Caswell A. H., Pressman B. C. Kinetics of transport of divalent cations across sarcoplasmic reticulum vesicles induced by ionophores. Biochem Biophys Res Commun. 1972 Oct 6;49(1):292–298. doi: 10.1016/0006-291x(72)90043-5. [DOI] [PubMed] [Google Scholar]
  3. Duffus J. H., Patterson L. J. Control of cell division in yeast using the ionophore, A23187 with calcium and magnesium. Nature. 1974 Oct 18;251(5476):626–627. doi: 10.1038/251626a0. [DOI] [PubMed] [Google Scholar]
  4. Estrada-O S., Calderón E. Potassium and proton movements in relation to the energy-linked transport of phosphate in liver mitochondria. Biochemistry. 1970 May 12;9(10):2092–2099. doi: 10.1021/bi00812a010. [DOI] [PubMed] [Google Scholar]
  5. Feinman R. D., Detwiler T. C. Platelet secretion induced by divalent cation ionophores. Nature. 1974 May 10;249(453):172–173. doi: 10.1038/249172a0. [DOI] [PubMed] [Google Scholar]
  6. Graven S. N., Estrada-O S., Lardy H. A. Alkali metal cation release and respiratory inhibition induced by nigericin in rat liver mitochondria. Proc Natl Acad Sci U S A. 1966 Aug;56(2):654–658. doi: 10.1073/pnas.56.2.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gómez-Puyou A., Sandoval F., Chávez E., Tuena M. On the role of K+ on oxidative phosphorylation. J Biol Chem. 1970 Oct 25;245(20):5239–5247. [PubMed] [Google Scholar]
  8. Gómez-Puyou A., Sandoval F., De Gómez-Puyou M. T., Peña A., Chávez E. Coupling of oxidative phosphorylation by monovalent cations. Biochemistry. 1972 Jan 4;11(1):97–102. doi: 10.1021/bi00751a017. [DOI] [PubMed] [Google Scholar]
  9. Harold F. M., Altendorf K. H., Hirata H. Probing membrane transport mechanisms with inophores. Ann N Y Acad Sci. 1974 May 10;235(0):149–160. doi: 10.1111/j.1749-6632.1974.tb43264.x. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Lardy H. A., Graven S. N., Estrada S. Specific induction and inhibition of cation and anion transport in mitochondria. Fed Proc. 1967 Sep;26(5):1355–1360. [PubMed] [Google Scholar]
  12. Lardy H. Influence of antibiotics and cyclic polyethers on ion transport in mitochondria. Fed Proc. 1968 Nov-Dec;27(6):1278–1282. [PubMed] [Google Scholar]
  13. Levy J. V., Cohen J. A., Inesi G. Contractile effects of a calcium ionophore. Nature. 1973 Apr 13;242(5398):461–463. doi: 10.1038/242461a0. [DOI] [PubMed] [Google Scholar]
  14. Luckasen J. R., White J. G., Kersey J. H. Mitogenic properties of a calcium ionophore, A23187. Proc Natl Acad Sci U S A. 1974 Dec;71(12):5088–5090. doi: 10.1073/pnas.71.12.5088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maino V. C., Green N. M., Crumpton M. J. The role of calcium ions in initiating transformation of lymphocytes. Nature. 1974 Sep 27;251(5473):324–327. doi: 10.1038/251324b0. [DOI] [PubMed] [Google Scholar]
  16. Massini P., Lüscher E. F. Some effects of ionophores for divalent cations on blood platelets. Comparison with the effects of thrombin. Biochim Biophys Acta. 1974 Nov 4;372(1):109–121. doi: 10.1016/0304-4165(74)90077-4. [DOI] [PubMed] [Google Scholar]
  17. Mitani M., Yamanishi T., Miyazaki Y. Salinomycin: a new monovalent cation ionophore. Biochem Biophys Res Commun. 1975 Oct 27;66(4):1231–1236. doi: 10.1016/0006-291x(75)90490-8. [DOI] [PubMed] [Google Scholar]
  18. Miyazaki Y., Shibuya M., Sugawara H., Kawaguchi O., Hirsoe C. Salinomycin, a new polyether antibiotic. J Antibiot (Tokyo) 1974 Nov;27(11):814–821. doi: 10.7164/antibiotics.27.814. [DOI] [PubMed] [Google Scholar]
  19. NIELSEN S. O., LEHNINGER A. L. Phosphorylation coupled to the oxidation of ferrocytochrome c. J Biol Chem. 1955 Aug;215(2):555–570. [PubMed] [Google Scholar]
  20. PRESSMAN B. C., LARDY H. A. Influence of potassium and other alkali cations on respiration of mitochondria. J Biol Chem. 1952 May;197(2):547–556. [PubMed] [Google Scholar]
  21. Pressman B. C., Harris E. J., Jagger W. S., Johnson J. H. Antibiotic-mediated transport of alkali ions across lipid barriers. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1949–1956. doi: 10.1073/pnas.58.5.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pressman B. C. Ionophorous antibiotics as models for biological transport. Fed Proc. 1968 Nov-Dec;27(6):1283–1288. [PubMed] [Google Scholar]
  23. Pressman B. C. Properties of ionophores with broad range cation selectivity. Fed Proc. 1973 Jun;32(6):1698–1703. [PubMed] [Google Scholar]
  24. Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
  25. Rottenberg H., Scarpa A. Calcium uptake and membrane potential in mitochondria. Biochemistry. 1974 Nov 5;13(23):4811–4817. doi: 10.1021/bi00720a020. [DOI] [PubMed] [Google Scholar]
  26. Shavit N., San Pietro A. K+ -dependent uncoupling of photophosphorylation by nigericin. Biochem Biophys Res Commun. 1967 Jul 21;28(2):277–283. doi: 10.1016/0006-291x(67)90441-x. [DOI] [PubMed] [Google Scholar]
  27. Ueda I., Wada T. Determination of inorganic phosphate by the molybdovanadate method in the presence of ATP and some interfering organic bases. Anal Biochem. 1970 Sep;37(1):169–174. doi: 10.1016/0003-2697(70)90273-3. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES