Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1976 Apr;9(4):696–700. doi: 10.1128/aac.9.4.696

Uptake of Metronidazole and Its Effect on Viability in Trichomonads and Entamoeba invadens Under Anaerobic and Aerobic Conditions

MiklÓs MÜller 1, Donald G Lindmark 1
PMCID: PMC429600  PMID: 1083712

Abstract

[14C]metronidazole used at the chemotherapeutic concentration of 10 μg/ml is taken up rapidly by the anaerobic protozoa Tritrichomonas foetus, Trichomonas vaginalis, and Entamoeba invadens kept under anaerobic conditions. It can be calculated that within 30 to 60 min the intracellular concentration of the label is 50 to 100 times higher than in the medium. The presence of air markedly suppresses the uptake in the trichomonads and abolishes it in E. invadens. The suppression disappears after anaerobic conditions are established. The rate of uptake in T. foetus is dependent on the concentration of the drug in the range studied (1 to 200 μg/ml). Analysis of double reciprocal plots suggests that the drug enters the cells predominantly or exclusively by diffusion. The major factor driving the uptake is most likely the intracellular biotransformation of the compound. If less than 3 μg of drug per mg of protein is taken up by T. foetus no decrease in viability is observed. Above this level the cytotoxic activity corresponds roughly to the amount accumulated in the cell, irrespective of whether the conditions are anaerobic or aerobic.

Full text

PDF
696

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauchop T. Mechanism of hydrogen formation in Trichomonas foetus. J Gen Microbiol. 1971 Sep;68(1):27–33. doi: 10.1099/00221287-68-1-27. [DOI] [PubMed] [Google Scholar]
  2. DIAMOND L. S. The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol. 1957 Aug;43(4):488–490. [PubMed] [Google Scholar]
  3. Diamond L. S. Techniques of axenic cultivation of Entamoeba histolytica Schaudinn, 1903 and E. histolytica-like amebae. J Parasitol. 1968 Oct;54(5):1047–1056. [PubMed] [Google Scholar]
  4. Edwards D. I., Dye M., Carne H. The selective toxicity of antimicrobial nitroheterocyclic drugs. J Gen Microbiol. 1973 May;76(1):135–145. doi: 10.1099/00221287-76-1-135. [DOI] [PubMed] [Google Scholar]
  5. GRAY C. T., GEST H. BIOLOGICAL FORMATION OF MOLECULAR HYDROGEN. Science. 1965 Apr 9;148(3667):186–192. doi: 10.1126/science.148.3667.186. [DOI] [PubMed] [Google Scholar]
  6. Grunberg E., Titsworth E. H. Chemotherapeutic properties of heterocyclic compounds: monocyclic compounds with five-membered rings. Annu Rev Microbiol. 1973;27:317–346. doi: 10.1146/annurev.mi.27.100173.001533. [DOI] [PubMed] [Google Scholar]
  7. Ings R. M., Law G. L., Parnell E. W. The metabolism of metronidazole (1-2'-hydroxyethyl-2-methyl-5-nitroimidazole). Biochem Pharmacol. 1966 May;15(5):515–519. doi: 10.1016/0006-2952(66)90017-7. [DOI] [PubMed] [Google Scholar]
  8. Ings R. M., McFadzean J. A., Ormerod W. E. The mode of action of metronidazole in Trichomonas vaginalis and other micro-organisms. Biochem Pharmacol. 1974 May 1;23(9):1421–1429. doi: 10.1016/0006-2952(74)90362-1. [DOI] [PubMed] [Google Scholar]
  9. Leighton F., Poole B., Beaufay H., Baudhuin P., Coffey J. W., Fowler S., De Duve C. The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol. 1968 May;37(2):482–513. doi: 10.1083/jcb.37.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lindmark D. G., Müller M. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem. 1973 Nov 25;248(22):7724–7728. [PubMed] [Google Scholar]
  11. Montalvo F. E., Reeves R. E., Warren L. G. Aerobic and anaerobic metabolism in Entamoeba histolytica. Exp Parasitol. 1971 Oct;30(2):249–256. doi: 10.1016/0014-4894(71)90089-0. [DOI] [PubMed] [Google Scholar]
  12. O'Brien R. W., Morris J. G. Effect of metronidazole on hydrogen production by Clostridium acetobutylicum. Arch Mikrobiol. 1972;84(3):225–233. doi: 10.1007/BF00425200. [DOI] [PubMed] [Google Scholar]
  13. RYLEY J. F. Studies on the metabolism of the protozoa. 5. Metabolism of the parasitic flagellate Trichomonas foetus. Biochem J. 1955 Mar;59(3):361–369. doi: 10.1042/bj0590361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stambaugh J. E., Feo L. G., Manthei R. W. The isolation and identification of the urinary oxidative metabolites of metronidazole in man. J Pharmacol Exp Ther. 1968 Jun;161(2):373–381. [PubMed] [Google Scholar]
  15. Tanowitz H. B. In vitro studies on the differential toxicity of metronidazole in protozoa and mammalian cells. Ann Trop Med Parasitol. 1975 Mar;69(1):19–28. doi: 10.1080/00034983.1975.11686980. [DOI] [PubMed] [Google Scholar]
  16. Willson R. L., Searle A. J. Metronidazole (Flagyl): iron catalysed reaction with sulphydryl groups and tumour radiosensitisation. Nature. 1975 Jun 5;255(5508):498–500. doi: 10.1038/255498a0. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES