Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1976 May;9(5):810–816. doi: 10.1128/aac.9.5.810

Resistance Plasmids of Pseudomonas aeruginosa: Change from Conjugative to Nonconjugative in a Hospital Population

Thomas R Korfhagen 1, James A Ferrel 1, Constance L Menefee 1, John C Loper 1
PMCID: PMC429626  PMID: 821390

Abstract

Properties of a population of carbenicillin- and gentamicin-resistant, tobramycin-susceptible Pseudomonas aeruginosa at Veteran's Administration Hospital, Cincinnati, Ohio, have been followed during a 16-month period. As originally described, the strains were isolated from patients with urinary tract colonizations and were predominantly Parke-Davis immunotype 7. For the majority of these organisms, antibiotic resistance was correlated with the presence of a self-conjugative plasmid of incompatibility group P-2. The source and relative incidence of multiply resistant isolates have remained constant during the current study, but the immunotype has shifted form type 7 to type 2. Concomitantly, the population has lost the property of conjugative transfer of resistance, and resistant strains are now compatible with P-2 plasmids. A group P-2 R plasmid, pMG5, will mobilize resistance markers, demonstrating that the multiple resistance of the nonconjugative strains is mediated by R plasmids. Additionally, gentamicin resistance due to either conjugative or nonconjugative plasmids is correlated with the presence of similar gentamicin acetyltransferase activity. pMG5-mobilized plasmids are shown to be incompatible with pMG5. pMG5 is also shown to mobilize resistance markers from nontransferring antibiotic-resistant strains representing populations from Parkland Memorial Hospital, Dallas, Texas, and Cleveland Clinic Foundation, Cleveland, Ohio.

Full text

PDF
810

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E. S., Perret D. Mobilization of transduced tetracycline resistance by the delta transfer factor in Salmonella typhimurium and S. typhi. Nature. 1967 May 20;214(5090):810–811. doi: 10.1038/214810b0. [DOI] [PubMed] [Google Scholar]
  2. Benveniste R., Davies J. Enzymatic acetylation of aminoglycoside antibiotics by Escherichia coli carrying an R factor. Biochemistry. 1971 May 11;10(10):1787–1796. doi: 10.1021/bi00786a009. [DOI] [PubMed] [Google Scholar]
  3. Bryan L. E., Shahrabadi M. S., van den Elzen H. M. Gentamicin resistance in Pseudomonas aeruginosa: R-factor-mediated resistance. Antimicrob Agents Chemother. 1974 Aug;6(2):191–199. doi: 10.1128/aac.6.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chakrabarty A. M. Dissociation of a degradative plasmid aggregate in Pseudomonas. J Bacteriol. 1974 Jun;118(3):815–820. doi: 10.1128/jb.118.3.815-820.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fisher M. W., Devlin H. B., Gnabasik F. J. New immunotype schema for Pseudomonas aeruginosa based on protective antigens. J Bacteriol. 1969 May;98(2):835–836. doi: 10.1128/jb.98.2.835-836.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Holmes R. K., Minshew B. H., Gould I. K., Sanford J. P. Resistance of Pseudomonas aeruginosa to gentamicin and related aminoglycoside antibiotics. Antimicrob Agents Chemother. 1974 Sep;6(3):253–262. doi: 10.1128/aac.6.3.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jacoby G. A. Properties of R plasmids determining gentamicin resistance by acetylation in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1974 Sep;6(3):239–252. doi: 10.1128/aac.6.3.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jacoby G. A. Properties of an R plasmid in Pseudomonas aeruginosa producing amikacin (BB-K8), butirosin, kanamycin, tobramycin, and sisomicin resistance. Antimicrob Agents Chemother. 1974 Dec;6(6):807–810. doi: 10.1128/aac.6.6.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Knothe H., Krcméry V., Sietzen W., Borst J. Transfer of gentamicin resistance from Pseudomonas aeruginosa strains highly resistant to gentamicin and carbenicillin. Chemotherapy. 1973;18(4):229–234. doi: 10.1159/000221266. [DOI] [PubMed] [Google Scholar]
  10. Korfhagen T. R., Loper J. C., Ferrel J. A. Pseudomonas aeruginosa R factors determining gentamicin plus carbenicillin resistance from patients with urinary tract colonizations. Antimicrob Agents Chemother. 1975 Jan;7(1):64–68. doi: 10.1128/aac.7.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Korfhagen T. R., Loper J. C. RPL11, an R factor of Pseudomonas aeruginosa determining carbenicillin and gentamicin resistance. Antimicrob Agents Chemother. 1975 Jan;7(1):69–73. doi: 10.1128/aac.7.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Lowbury E. J., Lilly H. A., Kidson A., Ayliffe G. A., Jones R. J. Sensitivity of Pseudomonas aeruginosa to antibiotics: emergence of strains highly resistant to carbenicillin. Lancet. 1969 Aug 30;2(7618):448–452. doi: 10.1016/s0140-6736(69)90163-9. [DOI] [PubMed] [Google Scholar]
  14. Slepack J. M., Korfhagen T., Loper J. C., Tan J. S., Phair J. P. Virulence in rats of gentamicin-carbenicillin-resistant Pseudomonas. Antimicrob Agents Chemother. 1975 Oct;8(4):513–514. doi: 10.1128/aac.8.4.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sykes R. B., Richmond M. H. Intergeneric transfer of a beta-lactamase gene between Ps. aeruginosa and E. coli. Nature. 1970 Jun 6;226(5249):952–954. doi: 10.1038/226952a0. [DOI] [PubMed] [Google Scholar]
  16. Witchitz J. L., Chabbert Y. A. Résistance transférable à la gentamicine I. Expression du caractère de résistance. Ann Inst Pasteur (Paris) 1971 Dec;121(6):733–742. [PubMed] [Google Scholar]
  17. van Rensburg A. J. Transferable resistance to carbenicillin and gentamicin in Pseudomonas aeruginosa. S Afr Med J. 1974 Jun 12;48(28):1185–1186. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES