Abstract
Cultures of Staphylococcus aureus, Neisseria gonorrhoeae, and Streptococcus bovis were incubated on membrane filters on agar containing antibiotics at one-third to one-fourth the minimal inhibitory concentration for the particular bacterial strain. S. aureus was grown in the presence of oxacillin, cephaloridine, or lincomycin. N. gonorrhoeae and S. bovis were grown in the presence of penicillin. The membranes were then incubated in drug-free agar, after which viability was determined and the cells were examined by electron microscopy. S. aureus exposed to oxacillin and cephaloridine grew into cells two to seven times larger than normal that contained thick multiple cross walls. S. aureus exposed to lincomycin grew into cells 1.5 to 2 times larger than normal, with multiple thick cross walls and periheral cell walls twice the normal thickness. N. gonorrhoeae cells exposed to penicillin were slightly larger than normal and had cross walls that were up to eight times thicker than normal. After transfer to drug-free agar, cells became smaller, and some normal organisms could be seen. S. bovis incubated in the presence of penicillin grew into filaments that contained no cross walls. Two hours after the return to drug-free agar, filaments with cross walls as well as normal cells were observed. Exposure to subinhibitory concentrations of penicillin did not affect the growth of the peripheral cell wall of S. aureus, N. gonorrhoeae, or S. bovis, but appeared to inhibit lysis of cross walls in S. aureus and N. gonorrhoeae and to inhibit the synthesis of cross walls in S. bovis; that is, the rates of peripheral and cross wall formation differed in their susceptibility to penicillin. These facts suggest that peripheral growth and cross wall formation in cocci are separable processes.
Full text
PDF












Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Briles E. B., Tomasz A. Radioautographic evidence for equatorial wall growth in a gram-positive bacterium. Segregation of choline-3H-labeled teichoic acid. J Cell Biol. 1970 Dec;47(3):786–790. doi: 10.1083/jcb.47.3.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burdett I. D., Murray R. G. Septum formation in Escherichia coli: characterization of septal structure and the effects of antibiotics on cell division. J Bacteriol. 1974 Jul;119(1):303–324. doi: 10.1128/jb.119.1.303-324.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COLE R. M., HAHN J. J. Cell wall replication in Streptococcus pyogenes. Science. 1962 Mar 2;135(3505):722–724. doi: 10.1126/science.135.3505.722. [DOI] [PubMed] [Google Scholar]
- Cadieux G., Côté J. R., Mathieu L. G. Microscopic observation of cell-wall modifications in Staphylococcus aureus cells treated with chloramphenicol or phenethyl alcohol. Rev Can Biol. 1970 Sep;29(3):219–225. [PubMed] [Google Scholar]
- Cole R. M., Chatterjee A. N., Gilpin R. W., Young F. E. Ultrastructure of teichoic acid-deficient and other mutants of staphylococci. Ann N Y Acad Sci. 1974 Jul 31;236(0):22–53. doi: 10.1111/j.1749-6632.1974.tb41480.x. [DOI] [PubMed] [Google Scholar]
- Dienes L. THE DEVELOPMENT OF PROTEUS CULTURES IN THE PRESENCE OF PENICILLIN. J Bacteriol. 1949 May;57(5):529–546. doi: 10.1128/jb.57.5.529-546.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dring G. J., Hurst A. Observations on the action of benzylpenicillin on a strain of Streptococcus lactis. J Gen Microbiol. 1969 Feb;55(2):185–194. doi: 10.1099/00221287-55-2-185. [DOI] [PubMed] [Google Scholar]
- FLEMING A., VOUREKA A., KRAMER I. R. H., HUGHES W. H. The morphology and motility of Proteus vulgaris and other organisms cultured in the presence of penicillin. J Gen Microbiol. 1950 May;4(2):257–269. doi: 10.1099/00221287-4-2-257. [DOI] [PubMed] [Google Scholar]
- Fitz-James P., Hancock R. The initial structural lesion of penicillin action in Bacillus megaterium. J Cell Biol. 1965 Aug;26(2):657–667. doi: 10.1083/jcb.26.2.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleck J., Mock M. Etude de la forme filamenteuse de Proteus vulgaris P 18 induite par la pénicilline. Ann Inst Pasteur (Paris) 1972 Sep;123(3):319–332. [PubMed] [Google Scholar]
- Giesbrecht P., Ruska H. Uber Veränderungen der Feinstrukturen von Bakterien unter der Einwirkung von Chloramphenicol. Klin Wochenschr. 1968 Jun 1;46(11):575–582. doi: 10.1007/BF01747836. [DOI] [PubMed] [Google Scholar]
- Greenwood D., O'Grady F. Comparison of the responses of Escherichia coli and proteus mirabilis to seven beta-lactam antibodies. J Infect Dis. 1973 Aug;128(2):211–222. doi: 10.1093/infdis/128.2.211. [DOI] [PubMed] [Google Scholar]
- Hash J. H., Davies M. C. Electron Microscopy of Staphylococcus aureus Treated with Tetracycline. Science. 1962 Nov 16;138(3542):828–829. doi: 10.1126/science.138.3542.828. [DOI] [PubMed] [Google Scholar]
- Higgins M. L., Pooley H. M., Shockman G. D. Site of initiation of cellular autolysis in Streptococcus faecalis as seen by electron microscopy. J Bacteriol. 1970 Aug;103(2):504–512. doi: 10.1128/jb.103.2.504-512.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgins M. L., Shockman G. D. Model for cell wall growth of Streptococcus faecalis. J Bacteriol. 1970 Feb;101(2):643–648. doi: 10.1128/jb.101.2.643-648.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgins M. L., Shockman G. D. Procaryotic cell division with respect to wall and membranes. CRC Crit Rev Microbiol. 1971 May;1(1):29–72. doi: 10.3109/10408417109104477. [DOI] [PubMed] [Google Scholar]
- Josten J. J., Allen P. M. The mode of action of lincomycin. Biochem Biophys Res Commun. 1964;14:241–244. doi: 10.1016/0006-291x(64)90442-5. [DOI] [PubMed] [Google Scholar]
- Koike M., Iida K., Nakashima K., Tokunaga J. Small-cell formation of Staphylococcus aureus by subinhibitory concentrations of nitrofuran derivatives. J Bacteriol. 1974 Oct;120(1):524–526. doi: 10.1128/jb.120.1.524-526.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorain V., Sabath L. D. Penicillins and cephalosporins: differences in morphologic effects on Proteus mirabilis. J Infect Dis. 1972 May;125(5):560–564. doi: 10.1093/infdis/125.5.560. [DOI] [PubMed] [Google Scholar]
- Lorian V. Some effect of subinbilitory concentrations of penicillin on the structure and division of staphylococci. Antimicrob Agents Chemother. 1975 Jun;7(6):864–867. doi: 10.1128/aac.7.6.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MITCHELL P., MOYLE J. Autolytic release and osmotic properties of protoplasts from Staphylococcus aureus. J Gen Microbiol. 1957 Feb;16(1):184–194. doi: 10.1099/00221287-16-1-184. [DOI] [PubMed] [Google Scholar]
- MURRAY R. G., FRANCOMBE W. H., MAYALL B. H. The effect of penicillin on the structure of staphylococcal cell walls. Can J Microbiol. 1959 Dec;5:641–648. doi: 10.1139/m59-078. [DOI] [PubMed] [Google Scholar]
- Perkins R. L., Miller M. A. Scanning electron microscopy of morphological alterations in Proteus mirabilis induced by cephalosporins and semisynthetic penicillins. Can J Microbiol. 1973 Feb;19(2):251–255. doi: 10.1139/m73-038. [DOI] [PubMed] [Google Scholar]
- Pooley H. M., Shockman G. D. Relationship between the location of autolysin, cell wall synthesis, and the development of resistance to cellular autolysis in Streptococcus faecalis after inhibition of protein synthesis. J Bacteriol. 1970 Aug;103(2):457–466. doi: 10.1128/jb.103.2.457-466.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reusser F. Effect of lincomycin and clindamycin on peptide chain initiation. Antimicrob Agents Chemother. 1975 Jan;7(1):32–37. doi: 10.1128/aac.7.1.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogers H. J. Bacterial growth and the cell envelope. Bacteriol Rev. 1970 Jun;34(2):194–214. doi: 10.1128/br.34.2.194-214.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shockman G. D. Symposium on the fine structure and replication of bacteria and their parts. IV. Unbalanced cell-wall synthesis: autolysis and cell-wall thickening. Bacteriol Rev. 1965 Sep;29(3):345–358. doi: 10.1128/br.29.3.345-358.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shockman G. D., Thompson J. S., Conover M. J. The autolytic enzyme system of Streptococcus faecalis. II. Partial characterization of the autolysin and its substrate. Biochemistry. 1967 Apr;6(4):1054–1065. doi: 10.1021/bi00856a014. [DOI] [PubMed] [Google Scholar]
- Simionescu N., Simionescu M., Palade G. E. Permeability of intestinal capillaries. Pathway followed by dextrans and glycogens. J Cell Biol. 1972 May;53(2):365–392. doi: 10.1083/jcb.53.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tipper D. J. Mechanism of autolysis of isolated cell walls of Staphylococcus aureus. J Bacteriol. 1969 Feb;97(2):837–847. doi: 10.1128/jb.97.2.837-847.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warren G. H., Stasny J. T. Electron microscopic study of the action of nafcillin on Staphylococcus aureus. Chemotherapy. 1968;13(6):356–361. doi: 10.1159/000220569. [DOI] [PubMed] [Google Scholar]
- Zimmerman S. B., Stapley E. O. Relative morphological effects induced by cefoxitin and other beta-lactam antibiotics in vitro. Antimicrob Agents Chemother. 1976 Feb;9(2):318–326. doi: 10.1128/aac.9.2.318. [DOI] [PMC free article] [PubMed] [Google Scholar]









